Math 113 Homework 2 - Solutions

Due: 1 November 2005 Tuesday.

Q-1) (Page 168, Exercise 25.) Derive the following formulas:

Solution:

$(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{(\sin x)^{\prime}(\cos x)-(\sin x)(\cos x)^{\prime}}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x$.
$(\cot x)^{\prime}=\left(\frac{\cos x}{\sin x}\right)^{\prime}=\frac{(\cos x)^{\prime}(\sin x)-(\cos x)(\sin x)^{\prime}}{\sin ^{2} x}=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}=\csc ^{2} x$.
$(\sec x)^{\prime}=\left(\frac{1}{\cos x}\right)^{\prime}=\frac{-(\cos x)^{\prime}}{\cos ^{2} x}=\frac{\sin x}{\cos ^{2} x}=\frac{1}{\cos x} \frac{\sin x}{\cos x}=\sec x \tan x$.
$(\csc x)^{\prime}=\left(\frac{1}{\sin x}\right)^{\prime}=\frac{-(\sin x)^{\prime}}{\sin ^{2} x}=\frac{-\cos x}{\sin ^{2} x}=\frac{1}{\sin x} \frac{\cos x}{\sin x}=-\csc x \cot x$.
Q-2) (Page 173, Exercise 7) Show that the line $y=-x$ is tangent to the curve $y=x^{3}-6 x^{2}+8 x$.

Solution:

The slope of the tangent line to the curve at an arbitrary point x is given by $y^{\prime}=3 x^{2}-12 x+8$.
We find the points where this slope is -1 , the slope of the line $y=-x$.
$3 x^{2}-12 x+8=-1,3 x^{2}-12 x+9=(3 x-3)(x-3)=0, x=1$ and $x=3$.
The equation of the tangent lines to the curve:
At $x=1, y=3$, tangent line is $y=-(x-1)+3=-x+4 \neq-x$.
At $x=3, y=-3$, tangent line is $y=-(x-3)-3=-x$.
The line $y=-x$ intersects the curve at the roots of the equation $x^{3}-6 x^{2}+8 x=-x$, $x^{3}-6 x^{2}+9 x=x(x-3)^{2}=0$. These are the points $x=0$ and $x=3$. The line $y=-x$ intersects the curve at $x=0$ and is tangent to it at $x=3$.

Q-3) (Page 180, Exercise 17) Find $h^{\prime}(x)$ and $k^{\prime}(x)$ where $h(x)=f[g(x)]$ and $k(x)=g[f(x)]$.

Solution:

$h^{\prime}(x)=f^{\prime}[g(x)] g^{\prime}(x)$. In particular $h^{\prime}(0)=f^{\prime}[g(0)] g^{\prime}(0)=f^{\prime}[2] \cdot(-5)=(2)(-5)=-10$. etc.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$	$h(x)$	$h^{\prime}(x)$	$k(x)$	$k^{\prime}(x)$
0	1	5	2	-5	0	-10	0	5
1	3	-2	0	1	1	5	1	12
2	0	2	3	1	2	4	2	-10
3	2	4	1	-6	3	12	3	4

Q-4) (Page 187, Exercise 10) Assume f has a derivative everywhere on an open interval I. Choose $a<b$ in I. Show that f^{\prime} takes every value between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Solution: Define $g:[a, b] \rightarrow \mathbb{R}$ as

$$
g(x)=\left\{\begin{array}{cc}
\frac{f(x)-f(a)}{x-a} & \text { if } x \neq a \\
f^{\prime}(a) & \text { if } x=a
\end{array}\right.
$$

Note that $\lim _{x \rightarrow a}=g(a)$ so g is continuous throughout $[a, b]$. Then by the intermediate value property of continuous functions, g takes every value between $g(a)$ and $g(b)$. By the mean value theorem, $g(x)=f^{\prime}(c)$ for some value $c \in(a, x)$. Since $g(a)=f^{\prime}(a)$, every value between $g(b)$ and $f^{\prime}(a)$ is taken by f^{\prime}.

Similarly define $h:[a, b] \rightarrow \mathbb{R}$ as

$$
h(x)=\left\{\begin{array}{cc}
\frac{f(x)-f(b)}{x-b} & \text { if } x \neq b \\
f^{\prime}(b) & \text { if } x=b
\end{array}\right.
$$

Using this as above we conclude that f^{\prime} takes every value between $f^{\prime}(b)$ and $h(a)$. We check that $h(a)=g(b)$, which concludes that f^{\prime} takes every value between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Q-5) (Page 191, Exercise 8) Plot $f(x)=\frac{1}{(x-1)(x-3)}$.

Solution:

$f(x)=\frac{1}{(x-1)(x-3)}, \quad f^{\prime}(x)=-2 \frac{x-2}{(x-1)^{2}(x-3)^{2}}, \quad f^{\prime \prime}(x)=\frac{2\left(3 x^{2}-12 x+13\right)}{(x-1)^{3}(x-3)^{3}}$.
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow \infty} f(x)=0, \quad \lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 3+} f(x)=\infty, \quad \lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 3-} f(x)=-\infty$.
$f^{\prime}(x)>0$ for $x<2$. $f^{\prime}(2)=0$, and $f^{\prime}(x)<0$ for $x>2$.
Also note that $f^{\prime \prime}(x)>0$ for $x<1$ and for $x>3$, while $f^{\prime \prime}(x)<0$ for $1<x<3$.
Clearly the graph has vertical asymptotes at $x=1$ and $x=3$.
Here is the graph:

Comments and questions to sertoz@bilkent.edu.tr

