Math 113 Homework 3 – Solutions

Due: 15 November 2005 Tuesday.

Q-1) We have a salt mine 5km inland from a straight coast line, (see figure.) Our customer is located 12km away along the coast. The cost of transportation along the coast is α times more expensive than that on land. Find the optimal path of transportation which minimizes our cost. Note that $\alpha \geq 0$ and the answer depends on α .

Solution:

Denote the length |BC| by x. Then |CD| = 12 - x, and the cost function to minimize is

$$f(x) = \sqrt{25 + x^2} + \alpha(12 - x), \quad 0 \le x \le 12.$$

We find that

$$f'(x) = \frac{x}{\sqrt{25 + x^2}} - \alpha$$

and that

$$f'(x) = 0$$
 if and only if $(1 - \alpha^2)x = 25\alpha^2$.

Now we have several cases depending on the value of $\alpha \geq 0$.

Case 1: $\alpha \ge 1$. Then there are no critical points so we check only the end points of the domain of f. $f(0) = 5 + 12\alpha \ge 5 + 12 = 17$ since $\alpha \ge 1$. f(12) = 13. So f(12) is the minimum value. **Case 2:** $0 \le \alpha < 1$. Then $x_0 = \frac{5\alpha}{\sqrt{1-\alpha^2}}$ is the only nonnegative critical point. This critical point will be useful for us if it is in the domain of f, i.e. we want $x_0 \le 12$. This forces $\alpha \le \frac{12}{13}$.

Case 2.1: $\frac{12}{13} \le \alpha \le 1$. In this case $x_0 \ge 12$ so we again check only the end points. $f(0) = 5 + 12\alpha \ge 5 + \frac{144}{13} \ge 16$. f(12) = 13. So again the minimum value is f(12).

Case 2.2: $0 < \alpha < \frac{12}{13}$. $f(0) = 5 + 12\alpha$, f(12) = 13, $f(x_0) = 5\sqrt{1 - \alpha^2} + 12\alpha$. By direct computation we check that $f(x_0)$ is the minimum value.

Case 2.3: $\alpha = 0$. In this case $x_0 = 0$, f(0) = 5 and f(12) = 13. So the minimum value is f(0).

Summary of cases:

If $\alpha = 0$, then the minimum value is f(0) = 5. If $0 < \alpha < \frac{12}{13}$, then the minimum occurs at the point $x_0 = \frac{5\alpha}{\sqrt{1 - \alpha^2}}$. Check that $0 < x_0 < 12$ and $f(x_0) = 5\sqrt{1 - \alpha^2} + 12\alpha$. If $\alpha \ge \frac{12}{13}$, then the minimum value is f(12) = 13.

Here are a few sample graphs with different α 's:

Q-2) (Page 195, Exercise 12) Given a right circular cone with radius R and altitude H. Find the radius and altitude of the right circular cylinder of largest lateral surface area that can be inscribed in the cone.

Solution: From similar triangles we find $h = H - \frac{H}{R}r$. The function to maximize is $f(r) = 2\pi H\left(r - \frac{1}{R}r^2\right), \ 0 \le r \le R.$

f'(r) = 0 when r = R/2. Then h = H/2. Since f(0) = f(R) = 0, the critical point gives the maximum value $f(R/2) = HR\pi/4$.

Q-3) (Page 195, Exercise 14) Given a sphere of radius R. Compute, in terms of R, the radius r and the altitude h of the right circular cone of maximum volume that can be inscribed in this sphere.

Solution: From the above right triangle we find $r^2 = R^2 - x^2$. Let the height of the cone be h. Then h = R + x. The volume function to maximize is

$$V(x) = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (R^3 + R^2 x - Rx^2 - x^3), \quad -R \le x \le R.$$

We find that V'(x) = 0 when x = R/3 interior the domain. Since V(-R) = V(R) = 0 and $V(R/3) = 8\pi R^3/81$, this critical point gives the maximum volume. In that case $r = 2\sqrt{2R/3}$ and h = 4R/3.

Q-4) (Page 196, Exercise 23) A window is to be made in the form of a rectangle surmounted by a semicircle with diameter equal to the base of the rectangle. The rectangular portion is to be of clear glass, and the semicircular portion is to be of a colored glass admitting only half as much light per square foot as the clear glass. The total perimeter of the window frame is to be a fixed length P. Find, in terms of P, the dimensions of the window which will admit the most light.

Solution:

Since
$$P = 2x + 2y + \pi x$$
, we must have $y = \frac{1}{2}(P - (2 + \pi)x)$ and $0 \le x \le \frac{P}{2 + \pi}$.

The function to maximize is

$$f(x) = (2xy) + \frac{1}{2}(\frac{\pi x^2}{2}) = Px - \frac{1}{4}(3\pi + 8)x^2, \quad 0 \le x \le \frac{P}{2+\pi}.$$

We see that f'(x) = 0 when $x = 2P/(3\pi+8)$, and since $f(0) = f(\frac{P}{2+\pi}) = 0$ and $f(2P/(3\pi+8)) = P^2/(3\pi+8)$, this critical point gives the maximum value. In that case the base of the rectangle is $2x = 4P/(3\pi+8)$ and the height is $y = P(\pi+4)/(6\pi+16)$.

Q-5) (Page 196, Exercise 25) Given *n* real numbers a_1, \ldots, a_n . Prove that the sum $\sum_{k=1}^n (x-a_k)^2$ is smallest when *x* is the arithmetic mean of a_1, \ldots, a_n .

Solution: Let $f(x) = \sum_{k=1}^{n} (x - a_k)^2$ for all real x. f is continuous, is always nonnegative and becomes unbounded as |x| increases. So it must have a global minimum.

 $f'(x) = 2(nx - (a_1 + \dots + a_n))$ and f'(x) = 0 when $x = (a_1 + \dots + a_n)/n$. Since this is the only critical point, it must give the global minimum.

Please send comments and questions to sertoz@bilkent.edu.tr