Math 113 Homework 3 - Solutions

Due: 15 November 2005 Tuesday.

Q-1) We have a salt mine 5 km inland from a straight coast line, (see figure.) Our customer is located 12 km away along the coast. The cost of transportation along the coast is α times more expensive than that on land. Find the optimal path of transportation which minimizes our cost. Note that $\alpha \geq 0$ and the answer depends on α.

Solution:

Denote the length $|B C|$ by x. Then $|C D|=12-x$, and the cost function to minimize is

$$
f(x)=\sqrt{25+x^{2}}+\alpha(12-x), \quad 0 \leq x \leq 12 .
$$

We find that

$$
f^{\prime}(x)=\frac{x}{\sqrt{25+x^{2}}}-\alpha
$$

and that

$$
f^{\prime}(x)=0 \quad \text { if and only if } \quad\left(1-\alpha^{2}\right) x=25 \alpha^{2} .
$$

Now we have several cases depending on the value of $\alpha \geq 0$.
Case 1: $\alpha \geq 1$.
Then there are no critical points so we check only the end points of the domain of f. $f(0)=5+12 \alpha \geq 5+12=17$ since $\alpha \geq 1$.
$f(12)=13$.
So $f(12)$ is the minimum value.

Case 2: $0 \leq \begin{gathered}\alpha \\ 5 \alpha\end{gathered}$.
Then $x_{0}=\frac{5 \alpha}{\sqrt{1-\alpha^{2}}}$ is the only nonnegative critical point. This critical point will be useful for us if it is in the domain of f, i.e. we want $x_{0} \leq 12$. This forces $\alpha \leq \frac{12}{13}$.

Case 2.1: $\quad \frac{12}{13} \leq \alpha \leq 1$.
In this case $x_{0} \geq 12$ so we again check only the end points.
$f(0)=5+12 \alpha \geq 5+\frac{144}{13} \geq 16$.
$f(12)=13$.
So again the minimum value is $f(12)$.
Case 2.2: $\quad 0<\alpha<\frac{12}{13}$.
$f(0)=5+12 \alpha$,
$f(12)=13$,
$f\left(x_{0}\right)=5 \sqrt{1-\alpha^{2}}+12 \alpha$.
By direct computation we check that $f\left(x_{0}\right)$ is the minimum value.
Case 2.3: $\quad \alpha=0$.
In this case $x_{0}=0, f(0)=5$ and $f(12)=13$. So the minimum value is $f(0)$.

Summary of cases:

If $\alpha=0$, then the minimum value is $f(0)=5$.
If $0<\alpha<\frac{12}{13}$, then the minimum occurs at the point $x_{0}=\frac{5 \alpha}{\sqrt{1-\alpha^{2}}}$. Check that $0<x_{0}<12$ and $f\left(x_{0}\right)=5 \sqrt{1-\alpha^{2}}+12 \alpha$.
If $\alpha \geq \frac{12}{13}$, then the minimum value is $f(12)=13$.
Here are a few sample graphs with different α 's:

Q-2) (Page 195, Exercise 12) Given a right circular cone with radius R and altitude H. Find the radius and altitude of the right circular cylinder of largest lateral surface area that can be inscribed in the cone.

Solution: From similar triangles we find $h=H-\frac{H}{R} r$. The function to maximize is $f(r)=2 \pi H\left(r-\frac{1}{R} r^{2}\right), \quad 0 \leq r \leq R$.
$f^{\prime}(r)=0$ when $r=R / 2$. Then $h=H / 2$. Since $f(0)=f(R)=0$, the critical point gives the maximum value $f(R / 2)=H R \pi / 4$.

Q-3) (Page 195, Exercise 14) Given a sphere of radius R. Compute, in terms of R, the radius r and the altitude h of the right circular cone of maximum volume that can be inscribed in this sphere.

Solution: From the above right triangle we find $r^{2}=R^{2}-x^{2}$. Let the height of the cone be h. Then $h=R+x$. The volume function to maximize is
$V(x)=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(R^{3}+R^{2} x-R x^{2}-x^{3}\right), \quad-R \leq x \leq R$.
We find that $V^{\prime}(x)=0$ when $x=R / 3$ interior the domain. Since $V(-R)=V(R)=0$ and $V(R / 3)=8 \pi R^{3} / 81$, this critical point gives the maximum volume. In that case $r=2 \sqrt{2} R / 3$ and $h=4 R / 3$.

Q-4) (Page 196, Exercise 23) A window is to be made in the form of a rectangle surmounted by a semicircle with diameter equal to the base of the rectangle. The rectangular portion is to be of clear glass, and the semicircular portion is to be of a colored glass admitting only half as much light per square foot as the clear glass. The total perimeter of the window frame is to be a fixed length P. Find, in terms of P, the dimensions of the window which will admit the most light.

$2 x$

Solution:

Since $P=2 x+2 y+\pi x$, we must have $y=\frac{1}{2}(P-(2+\pi) x)$ and $0 \leq x \leq \frac{P}{2+\pi}$.
The function to maximize is
$f(x)=(2 x y)+\frac{1}{2}\left(\frac{\pi x^{2}}{2}\right)=P x-\frac{1}{4}(3 \pi+8) x^{2}, \quad 0 \leq x \leq \frac{P}{2+\pi}$.
We see that $f^{\prime}(x)=0$ when $x=2 P /(3 \pi+8)$, and since $f(0)=f\left(\frac{P}{2+\pi}\right)=0$ and $f(2 P /(3 \pi+8))=$ $P^{2} /(3 \pi+8)$, this critical point gives the maximum value. In that case the base of the rectangle is $2 x=4 P /(3 \pi+8)$ and the height is $y=P(\pi+4) /(6 \pi+16)$.

Q-5) (Page 196, Exercise 25) Given n real numbers a_{1}, \ldots, a_{n}. Prove that the sum $\sum_{k=1}^{n}\left(x-a_{k}\right)^{2}$ is smallest when x is the arithmetic mean of a_{1}, \ldots, a_{n}.

Solution: Let $f(x)=\sum_{k=1}^{n}\left(x-a_{k}\right)^{2}$ for all real x. f is continuous, is always nonnegative and becomes unbounded as $|x|$ increases. So it must have a global minimum.
$f^{\prime}(x)=2\left(n x-\left(a_{1}+\cdots+a_{n}\right)\right)$ and $f^{\prime}(x)=0$ when $x=\left(a_{1}+\cdots+a_{n}\right) / n$. Since this is the only critical point, it must give the global minimum.

