Exercise 28, page 270, Apostol's Calculus:
28.) A function, called the integral logarithm and denoted by Li, is defined as follows:

$$
\operatorname{Li}(x)=\int_{2}^{x} \frac{d t}{\log t}, \text { if } x \geq 2
$$

This function occurs in analytic number theory where it is proved that $\operatorname{Li}(x)$ is a very good approximation to the number of primes $\leq x$. Derive the following properties of $\operatorname{Li}(x)$:
(a) $\operatorname{Li}(x)=\frac{x}{\log x}+\int_{2}^{x} \frac{d t}{\log t}-\frac{2}{\log 2}$.

Solution-(a) Use integration by parts with $u=1 / \log t$ to obtain the result.
(b) $\operatorname{Li}(x)=\frac{x}{\log x}+\sum_{k=1}^{n-1} \frac{k!x}{\log ^{k+1} x}+n!\int_{2}^{x} \frac{d t}{\log ^{n+1} t}+C_{n}$, where C_{n} is a constant (depending on n). Find this constant.

Solution-(b) Assume the expression for n with $C_{n}=-2 \sum_{k=0}^{n-1} \frac{k!}{\log ^{k+1} 2}$. Clearly the claim holds for $n=0$ as we showed in part (a). Take the integral $\int_{2}^{x} \frac{d t}{\log ^{n+1} t}$ and apply by-parts on it with $u=1 / \log ^{n+1}$ to obtain

$$
\int_{2}^{x} \frac{d t}{\log ^{n+1} t}=\frac{x}{\log ^{n+1} x}-\frac{2}{\log ^{n+1} 2}+(n+1) \int_{2}^{x} \frac{d t}{\log ^{n+2} t} .
$$

Putting this back into its place we see that the claim holds for $n+1$ if it holds for n, and this completes the proof by induction.
(c) Show that there is a constant b such that $\int_{b}^{\log x} \frac{e^{t}}{t} d t=\operatorname{Li}(x)$ and find the value of b.

Solution-(c) Use the substitution $t=\log u$ to get

$$
\int_{b}^{\log x} \frac{e^{t}}{t} d t=\int_{e^{b}}^{x} \frac{d u}{\log u}
$$

and this is $\operatorname{Li}(x)$ if $e^{b}=2$, or if $b=\log 2$.
(d) Express $\int_{c}^{x} \frac{e^{2 t}}{(t-1)} d t$ in terms of the integral logarithm, where $c=1-\frac{1}{2} \log 2$.

Solution-(d) Use the substitution $t=\frac{1}{2} u+1$ to obtain

$$
\int_{c}^{x} \frac{e^{2 t}}{(t-1)} d t=e^{2} \int_{\log 2}^{2 x-2} \frac{e^{u}}{u} d u
$$

Now using part (c), this is equal to $e^{2} \operatorname{Li}\left(e^{2 x-2}\right)$.
(e) Let $f(x)=e^{4} \operatorname{Li}\left(e^{2 x-4}\right)-e^{2} \operatorname{Li}\left(e^{2 x-2}\right)$ if $x>3$. Show that

$$
f^{\prime}(x)=\frac{e^{2 x}}{x^{2}-3 x+2} .
$$

Solution-(e) Using chain rule and the fundamental theorem of calculus we immediately see that $\frac{d \operatorname{Li}(u(x))}{d x}=\frac{1}{\log u(x)} \frac{d u(x)}{d x}$. Using this we immediately get the result by direct calculation.

Please send comments to sertoz@bilkent.edu.tr

