Exercise 28, page 270, Apostol's Calculus:

28.) A function, called the *integral logarithm* and denoted by Li, is defined as follows:

$$\operatorname{Li}(x) = \int_{2}^{x} \frac{dt}{\log t}, \text{ if } x \ge 2$$

This function occurs in analytic number theory where it is proved that Li(x) is a very good approximation to the number of primes $\leq x$. Derive the following properties of Li(x):

(a)
$$\operatorname{Li}(x) = \frac{x}{\log x} + \int_2^x \frac{dt}{\log t} - \frac{2}{\log 2}$$
.

Solution-(a) Use integration by parts with $u = 1/\log t$ to obtain the result.

(b)
$$\operatorname{Li}(x) = \frac{x}{\log x} + \sum_{k=1}^{n-1} \frac{k!x}{\log^{k+1} x} + n! \int_{2}^{x} \frac{dt}{\log^{n+1} t} + C_n,$$

where C_n is a constant (depending on n). Find this constant.

Solution-(b) Assume the expression for n with $C_n = -2\sum_{k=0}^{n-1} \frac{k!}{\log^{k+1} 2}$. Clearly the claim holds for n = 0 as we showed in part (a). Take the integral $\int_2^x \frac{dt}{\log^{n+1} t}$ and apply by-parts on it with $u = 1/\log^{n+1}$ to obtain

$$\int_{2}^{x} \frac{dt}{\log^{n+1} t} = \frac{x}{\log^{n+1} x} - \frac{2}{\log^{n+1} 2} + (n+1) \int_{2}^{x} \frac{dt}{\log^{n+2} t} \cdot$$

Putting this back into its place we see that the claim holds for n + 1 if it holds for n, and this completes the proof by induction.

(c) Show that there is a constant b such that $\int_{b}^{\log x} \frac{e^{t}}{t} dt = \operatorname{Li}(x)$ and find the value of b.

Solution-(c) Use the substitution $t = \log u$ to get

$$\int_{b}^{\log x} \frac{e^{t}}{t} dt = \int_{e^{b}}^{x} \frac{du}{\log u},$$

and this is Li(x) if $e^b = 2$, or if $b = \log 2$.

(d) Express
$$\int_{c}^{x} \frac{e^{2t}}{(t-1)} dt$$
 in terms of the integral logarithm, where $c = 1 - \frac{1}{2} \log 2$

Solution-(d) Use the substitution $t = \frac{1}{2}u + 1$ to obtain

$$\int_{c}^{x} \frac{e^{2t}}{(t-1)} dt = e^{2} \int_{\log 2}^{2x-2} \frac{e^{u}}{u} du.$$

Now using part (c), this is equal to $e^{2}\text{Li}(e^{2x-2})$.

(e) Let $f(x) = e^4 \text{Li}(e^{2x-4}) - e^2 \text{Li}(e^{2x-2})$ if x > 3. Show that

$$f'(x) = \frac{e^{2x}}{x^2 - 3x + 2}.$$

Solution-(e) Using chain rule and the fundamental theorem of calculus we immediately see that $\frac{d\operatorname{Li}(u(x))}{dx} = \frac{1}{\log u(x)} \frac{du(x)}{dx}$. Using this we immediately get the result by direct calculation.

Please send comments to sertoz@bilkent.edu.tr