Exercise 28, page 270, Apostol’s Calculus:

28.) A function, called the integral logarithm and denoted by Li, is defined as follows:

Li(:p):/ i, ifx > 2.
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This function occurs in analytic number theory where it is proved that Li(z) is a very
good approximation to the number of primes < x. Derive the following properties of
Li(x):
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Solution-(a) Use integration by parts with « = 1/logt to obtain the result. O
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where C,, is a constant (depending on n). Find this constant.
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Solution-(b) Assume the expression for n with C,, = —2 Z e Clearly the claim
og

holds for n = 0 as we showed in part (a). Take the 1ntegral f2 o n+1 and apply by-parts
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on it with u = 1/log"™" to obtain
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Putting this back into its place we see that the claim holds for n + 1 if it holds for n, and
this completes the proof by induction. O]
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(c) Show that there is a constant b such that / %dt = Li(x) and find the value of b.
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Solution-(c) Use the substitution ¢ = logu to get
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and this is Li(x) if e® = 2, or if b = log 2. O
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(d) Express / (te—l) dt in terms of the integral logarithm, where ¢ = 1 — 3 log 2.

Solution-(d) Use the substitution ¢ = Ju + 1 to obtain
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/ ¢ dt = 62/ ‘< du.
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Now using part (c), this is equal to eLi(e**?). O




(e) Let f(x) = e'Li(e** 1) — €Li(e?*72) if x > 3. Show that

() = e
x? —3x+2

Solution-(e) Using chain rule and the fundamental theorem of calculus we immediately

dli(u(z)) 1  du(x)
dr  logu(z) dx

calculation. m

see that . Using this we immediately get the result by direct
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