\qquad
\qquad

Math 113 Calculus - Final Exam - Solutions

Q-1) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two uniformly continuous functions.
Prove or disprove: The function $f \circ g$ is uniformly continuous on \mathbb{R}.
Solution: The function $f \circ g$ is uniformly continuous on \mathbb{R}.
Let $\epsilon>0$ be chosen at random. Since f is uniformly continuous on \mathbb{R}, there exists a $\delta_{0}>0$ such that for all $y_{1}, y_{2} \in \mathbb{R}$ with $\left|y_{1}-y_{2}\right|<\delta_{0}$ we must have $\left|f\left(y_{1}\right)-f\left(y_{2}\right)\right|<\epsilon$. Now using the uniform continuity of g on \mathbb{R}, we can find a $\delta>0$ such that for all $x_{1}, x_{2} \in \mathbb{R}$ with $\left|x_{1}-x_{2}\right|<\delta$, we must have $\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|<\delta_{0}$.

It is now clear that for all $x_{1}, x_{2} \in \mathbb{R}$ with $\left|x_{1}-x_{2}\right|<\delta$, we have $\left|(f \circ g)\left(x_{1}\right)-(f \circ g)\left(x_{2}\right)\right|<\epsilon$.

Q-2) Find the limit

$$
\lim _{x \rightarrow 0} \frac{\sin x \sinh x-x^{2} \cos x}{\cos x \cosh x-1+x^{4}}
$$

Solution: Let $N(x)=\sin x \sinh x-x^{2} \cos x$ and $D(x)=\cos x \cosh x-1+x^{4}$. Using Taylor's theorem we have

$$
\begin{aligned}
N(x) & =\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\cdots\right)\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\cdots\right)-x^{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\cdots\right) \\
& =\frac{1}{2} x^{4}-\frac{19}{360} x^{6}+\cdots \\
D(x) & =\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\cdots\right)\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\cdots\right)-1+x^{4} \\
& =\frac{5}{6} x^{4}+\frac{1}{2520} x^{8}+\cdots \\
\lim _{x \rightarrow 0} \frac{N(x)}{D(x)} & =\lim _{x \rightarrow 0} \frac{\frac{1}{2} x^{4}-\frac{19}{360} x^{6}+\cdots}{\frac{5}{6} x^{4}+\frac{1}{2520} x^{8}+\cdots} \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{2}-\frac{19}{360} x^{2}+\cdots}{\frac{5}{6}+\frac{1}{2520} x^{4}+\cdots} \\
& =\frac{3}{5} .
\end{aligned}
$$

Q-3) Find the constants A and B such that

$$
\int_{2}^{8} \frac{\ln x}{(x+1)^{2}} d x=A \ln 2+B \ln 3 .
$$

Solution: Start with integration by parts letting $u=\ln x$ and $d v=d x /(x+1)^{2}$. Then $d u=d x / x$ and $v=-1 /(x+1)$. We get

$$
\int_{2}^{8} \frac{\ln x}{(x+1)^{2}} d x=\left(-\left.\frac{\ln x}{x+1}\right|_{2} ^{8}\right)+\int_{2}^{8} \frac{d x}{x(x+1)}=\int_{2}^{8} \frac{d x}{x(x+1)} .
$$

(Check it!) Next using partial fractions technique we find

$$
\int_{2}^{8} \frac{d x}{x(x+1)}=\int_{2}^{8} \frac{d x}{x}-\int_{2}^{8} \frac{d x}{1+x}=2 \ln 2-\ln 3
$$

Q-4) For $x>0$, define a function $f(x)=3 x^{2}+\frac{2 A}{x^{3}}$, where A is a positive constant.
Find the smallest value of A such that $f(x) \geq 45$ for all $x>0$.
Solution: We must arrange A such that the minimum value of f is 45 . For this we find

$$
f^{\prime}(x)=\frac{6}{x^{4}}\left(x^{5}-A\right)=0 .
$$

Let B be the positive number with $B^{5}=A$. Then $x=B$ is the only critical point for f. Since f approaches to infinity as x approaches to the boundary points, i.e. as $x \rightarrow 0+$ and as $x \rightarrow \infty), x=B$ must give the global minimum point. We set this global minimum value to 45 to find B and hence A.

$$
f(B)=5 B^{2}=45, \quad B=3, \quad A=243
$$

Q-5) $f:(-\pi / 2, \pi / 2) \longrightarrow \mathbb{R}$ is a differentiable function which is always positive, and it satisfies the identity

$$
f^{2}(x)-1=2 \int_{0}^{x} f^{2}(t) \sec ^{2} t d t, \text { for all } x \in(-\pi / 2, \pi / 2)
$$

Find explicitly what $f(x)$ is.
Solution: First we observe that $f(0)=1$. Then differentiating both sides of the identity with respect to x and using the fundamental theorem of calculus we find

$$
\begin{aligned}
2 f(x) f^{\prime}(x) & =2 f^{2}(x) \sec ^{2} x \\
\frac{f^{\prime}(x)}{f(x)} & =\sec ^{2} x \\
(\ln f(x))^{\prime} & =(\tan x)^{\prime} \\
\ln f(x)-\ln f(0) & =\tan x-\tan 0 \\
f(x) & =e^{\tan x} .
\end{aligned}
$$

Bonus:) Evaluate the integral

$$
\int_{0}^{1}(\arcsin x)^{2} d x
$$

Recall that $\frac{d \arcsin x}{d x}=\frac{1}{\sqrt{1-x^{2}}}$ for $|x|<1$.
Solution: First we attack the indefinite integral with by-parts letting $u=(\arcsin x)^{2}$, getting

$$
\int(\arcsin x)^{2} d x=x(\arcsin x)^{2}-2 \int \arcsin x \frac{x}{\sqrt{1-x^{2}}} d x .
$$

For the second integral we again use by-parts with $u=\arcsin x$ to get

$$
\int \arcsin x \frac{x}{\sqrt{1-x^{2}}} d x=-\sqrt{1-x^{2}} \arcsin x+x+C
$$

Putting these together we find

$$
\int(\arcsin x)^{2} d x=x(\arcsin x)^{2}+2 \sqrt{1-x^{2}} \arcsin x-2 x+C
$$

and finally

$$
\int_{0}^{1}(\arcsin x)^{2} d x=\frac{\pi^{2}}{4}-2 \approx 0.467401101
$$

