Calculus 113 Homework 6

Due date: 10 December 2007 Monday

Please take your homework solutions to room SA144, Ali Adalı's office until 17:00.

Q-1) Find a recursive formula for $I_{m,n} = \int x^m \ln^n x \, dx$, and use it to evaluate $\int_1^2 x^3 \ln^2 x \, dx$.

Q-2) Calculate f'(1) where $f(x) = x^{x^x} + x^{\ln(1+x)}$.

Q-3) Show that for any real x > 0 and any integer n > 0, $\left(1 + \frac{x}{n}\right)^n < e^x$.

Q-4) Let f(x) be the inverse hyperbolic sine function, *i.e.* $f(x) = \operatorname{arcsinh} x$. Find f'(x) in terms of x in two different ways:

i) Start with " $y = \operatorname{arcsinh} x$ if and only if $x = \sinh y$ ", and then use chain rule.

ii) From the definition of $x = \sinh y$, solve explicitly for y in terms of x and then take derivatives. You will have to choose between two roots of a quadratic equation. Explain how you make your choice.

Q-5) Evaluate $\int \frac{31 - 14x}{3x^2 + 2x + 1} dx.$

Q-6) Let $f: (a, b) \longrightarrow \mathbb{R}$ be a uniformly continuous function. Show that there exists a continuous function $F: [a, b] \longrightarrow \mathbb{R}$ such that F(x) = f(x) for all $x \in (a, b)$.

Please forward any comments or questions to sertoz@bilkent.edu.tr