Calculus 113 Homework 6

Due date: 10 December 2007 Monday
Please take your homework solutions to room SA144, Ali Adalı's office until 17:00.

Q-1) Find a recursive formula for $I_{m, n}=\int x^{m} \ln ^{n} x d x$, and use it to evaluate $\int_{1}^{2} x^{3} \ln ^{2} x d x$.

Q-2) Calculate $f^{\prime}(1)$ where $f(x)=x^{x^{x}}+x^{\ln (1+x)}$.

Q-3) Show that for any real $x>0$ and any integer $n>0,\left(1+\frac{x}{n}\right)^{n}<e^{x}$.

Q-4) Let $f(x)$ be the inverse hyperbolic sine function, i.e. $f(x)=\operatorname{arcsinh} x$. Find $f^{\prime}(x)$ in terms of x in two different ways:
i) Start with " $y=\operatorname{arcsinh} x$ if and only if $x=\sinh y$ ", and then use chain rule.
ii) From the definition of $x=\sinh y$, solve explicitly for y in terms of x and then take derivatives. You will have to choose between two roots of a quadratic equation. Explain how you make your choice.

Q-5) Evaluate $\int \frac{31-14 x}{3 x^{2}+2 x+1} d x$.

Q-6) Let $f:(a, b) \longrightarrow \mathbb{R}$ be a uniformly continuous function. Show that there exists a continuous function $F:[a, b] \longrightarrow \mathbb{R}$ such that $F(x)=f(x)$ for all $x \in(a, b)$.

Please forward any comments or questions to sertoz@bilkent.edu.tr

