Date: 4 January 2011, Tuesday Time: 15:30-17:30 Ali Sinan Sertöz

STUDENT NO:.....

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Math 113 Calculus – Final Exam – Solutions

Please do not write anything inside the above boxes!

$$\int \sec^3 \theta \, d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| + C$$

Q-1) Let $f : (a, b) \longrightarrow \mathbb{R}$ be a differentiable function. Assume that for some $x_0 \in (a, b)$, $\lim_{x \to x_0} f'(x)$ exists and is L. Show that $f'(x_0) = L$.

Solution: (This is Question 1 on Homework 1.)

Assume not. Without loss of generality say $L > f'(x_0)$. Choose an $\epsilon > 0$ with $f'(x_0) < L - \epsilon$. Using the definition of limit, to this $\epsilon > 0$ there corresponds a $\delta > 0$ such that for all $x \in (x_0 - \delta, x_0 + \delta)$, $x \neq x_0$, we must have $|f'(x) - L| < \epsilon$, in particular $L - \epsilon < f'(x)$.

Now choose any K with $f'(x_0) < K < L - \epsilon$. and any x_1 with $x_0 < x_1 < x_0 + \delta$. On the interval $[x_0, x_1]$ we have $f'(x_0) < K < L - \epsilon < f'(x_1)$. It follows from our interpretation of the limit above that there is no $x \in (x_0, x_1)$ with the property f'(x) = K, but this violates the Intermediate Property of the Derivative.

This contradiction proves that we must have $f'(x_0) = L$.

STUDENT NO:

Q-2) Write your answers to the space provided. No partial credits.

•
$$f(x) = (\sin x)^x$$
, $f'(x) = (\sin x)^x \left(\ln \sin x + \frac{x \cos x}{\sin x} \right)$.
• $f(x) = (\sqrt{x})^e + (\sqrt{2})^x$, $f'(x) = (e/2)x^{e/2-1} + (\sqrt{2})^x \ln \sqrt{2}$.
• $f(x) = (\ln(\arctan x))^{41}$, $f'(x) = 41 (\ln(\arctan x))^{40} \frac{\frac{1}{1+x^2}}{\arctan x}$.
• $f(x) = \int_{x^2}^{\tan x} \sqrt{1+t^3} dt$, $f'(x) = (\sqrt{1+\tan^3 x}) (\sec^2 x) - (\sqrt{1+x^6}) (2x)$.
• $f(0) = 1$, $f'(0) = 3$, $f(5) = 8$, $f'(5) = 10$, $g(0) = 5$, $g'(0) = 7$, $g(1) = 11$, $g'(1) = 11$
 $\lim_{x \to 0} \frac{g(f(x)) - g(f(0))}{x} = (g \circ f)'(0) = g'(f(0)) f'(0) = g'(1)f'(0) = 11 \cdot 3 = 33$.
 $\lim_{x \to 0} \frac{f(g(x)) - f(g(0))}{x} = (f \circ g)'(0) = f'(g(0)) g'(0) = f'(5)g'(0) = 10 \cdot 7 = 70$.

STUDENT NO:

Q-3) Find
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sqrt{n^2 + 3k^2} \right) / n^2$$
.

Solution: (*This is almost the same problem as Question 1 in Midterm Exam 2.*)

$$\sum_{k=1}^{n} \left(\sqrt{n^2 + 3k^2} \right) / n^2 = \sum_{k=1}^{n} \frac{1}{n} \sqrt{1 + \left(\frac{\sqrt{3}k}{n}\right)^2}$$

$$= \frac{1}{\sqrt{3}} \sum_{k=1}^{n} \frac{\sqrt{3}}{n} \sqrt{1 + \left(\frac{\sqrt{3}k}{n}\right)^2}$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sqrt{n^2 + 3k^2} \right) / n^2 = \frac{1}{\sqrt{3}} \int_0^{\sqrt{3}} \sqrt{1 + x^2} \, dx$$

$$= \frac{1}{\sqrt{3}} \int_0^{\pi/3} \sec^3 \theta \, d\theta$$

$$= \frac{1}{\sqrt{3}} \left(\frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln |\sec \theta + \tan \theta| \Big|_{0}^{\pi/3} \right)$$
$$= 1 + \frac{1}{2\sqrt{3}} \ln(2 + \sqrt{3})$$

 \approx 1.38.

NAME:

STUDENT NO:

Q-4) The solid in the figure below is cut from a vertical cylinder of radius 10 cm by two planes making angles of 60° with the horizontal. Find its volume.

(*This is Exercise 4 on page 454 of your textbook.*) **Solution is on next page:**

The equation of the cylinder is $x^2 + y^2 = 100$. The coordinates of the points a and b are

$$a = (\sqrt{100 - y^2}, y, 0), \text{ and } b = (\sqrt{100 - y^2}, y, 10\sqrt{3} - \sqrt{3}y).$$

The area of the shaded rectangle is

$$A(y) = 2\sqrt{100 - y^2}(10\sqrt{3} - \sqrt{3}y).$$

Then volume is

$$V = 2 \int_{0}^{10} A(y) \, dy$$

= $4\sqrt{3} \int_{0}^{10} \sqrt{100 - y^2} (10 - y) \, dy$
= $40\sqrt{3} \int_{0}^{10} \sqrt{100 - y^2} \, dy - 4\sqrt{3} \int_{0}^{10} y \sqrt{100 - y^2} \, dy$
= $40\sqrt{3} \left(100 \int_{0}^{\pi/2} \cos^2 \theta \, d\theta \right) - 4\sqrt{3} \left(\frac{1}{2} \int_{0}^{100} u^{1/2} \, du \right)$
= $40\sqrt{3} (25\pi) - 4\sqrt{3} \left(\frac{1000}{3} \right)$
= $1000\sqrt{3}(\pi - \frac{4}{3})$
 $\approx 3132.$

STUDENT NO:

Q-5) Aliye can run twice as fast as she can swim. She is standing at point A on the edge of a circular swimming pool 40 m in diameter, and she wishes to get to the diametrically opposite point B as quickly as possible. She can run around the edge to point C, then swim directly from C to B. Where should C be chosen to minimize the total time taken to get from A to B?

Solution: (*This is Example 5, solved in detail, on page 262 of your textbook.*)

Suppose Aliye swims at the rate k m/sec and hence runs at 2k m/sec. If $t = t(\theta)$ is the total time it takes for her to go from A to B via C, then the function to minimize is

$$t(\theta) = \frac{20\theta}{2k} + \frac{40}{k}\sin\frac{\pi - \theta}{2}, \ \theta \in [0, \pi].$$

For critical points we solve

$$t'(\theta) = \frac{10}{k} - \frac{20}{k}\cos\frac{\pi - \theta}{2} = 0,$$

which gives

$$\cos\frac{\pi-\theta}{2} = \frac{1}{2}, \ \frac{\pi-\theta}{2} = \frac{\pi}{3}, \ \theta = \frac{\pi}{3}$$

To find the minimum, we evaluate

$$t(0) = \frac{40}{k}, \ t(\frac{\pi}{3}) \approx \frac{45}{k}, \ t(\pi) \approx \frac{31}{k}.$$

Thus for shortest time, C must be situated at B. In other words, to reach to B as quickly as possible, Aliye should run all the way around the pool.

NAME: