\qquad
\qquad

Math 113 Calculus - Final Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

$$
\int \sec ^{3} \theta d \theta=\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|+C
$$

Q-1) Let $f:(a, b) \longrightarrow \mathbb{R}$ be a differentiable function. Assume that for some $x_{0} \in(a, b), \lim _{x \rightarrow x_{0}} f^{\prime}(x)$ exists and is L. Show that $f^{\prime}\left(x_{0}\right)=L$.

Solution: (This is Question 1 on Homework 1.)
Assume not. Without loss of generality say $L>f^{\prime}\left(x_{0}\right)$. Choose an $\epsilon>0$ with $f^{\prime}\left(x_{0}\right)<L-\epsilon$. Using the definition of limit, to this $\epsilon>0$ there corresponds a $\delta>0$ such that for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$, $x \neq x_{0}$, we must have $\left|f^{\prime}(x)-L\right|<\epsilon$, in particular $L-\epsilon<f^{\prime}(x)$.

Now choose any K with $f^{\prime}\left(x_{0}\right)<K<L-\epsilon$. and any x_{1} with $x_{0}<x_{1}<x_{0}+\delta$. On the interval $\left[x_{0}, x_{1}\right]$ we have $f^{\prime}\left(x_{0}\right)<K<L-\epsilon<f^{\prime}\left(x_{1}\right)$. It follows from our interpretation of the limit above that there is no $x \in\left(x_{0}, x_{1}\right)$ with the property $f^{\prime}(x)=K$, but this violates the Intermediate Property of the Derivative.

This contradiction proves that we must have $f^{\prime}\left(x_{0}\right)=L$.

Q-2) Write your answers to the space provided. No partial credits.

- $f(x)=(\sin x)^{x}, f^{\prime}(x)=(\sin x)^{x}\left(\ln \sin x+\frac{x \cos x}{\sin x}\right)$.
- $f(x)=(\sqrt{x})^{e}+(\sqrt{2})^{x}, f^{\prime}(x)=(e / 2) x^{e / 2-1}+(\sqrt{2})^{x} \ln \sqrt{2}$.
- $f(x)=(\ln (\arctan x))^{41}, f^{\prime}(x)=41(\ln (\arctan x))^{40} \frac{\frac{1}{1+x^{2}}}{\arctan x}$.
- $f(x)=\int_{x^{2}}^{\tan x} \sqrt{1+t^{3}} d t, f^{\prime}(x)=\left(\sqrt{1+\tan ^{3} x}\right)\left(\sec ^{2} x\right)-\left(\sqrt{1+x^{6}}\right)(2 x)$.
- $f(0)=1, f^{\prime}(0)=3, f(5)=8, f^{\prime}(5)=10, g(0)=5, g^{\prime}(0)=7, g(1)=11, g^{\prime}(1)=11$
$\lim _{x \rightarrow 0} \frac{g(f(x))-g(f(0))}{x}=(g \circ f)^{\prime}(0)=g^{\prime}(f(0)) f^{\prime}(0)=g^{\prime}(1) f^{\prime}(0)=11 \cdot 3=33$.
$\lim _{x \rightarrow 0} \frac{f(g(x))-f(g(0))}{x}=(f \circ g)^{\prime}(0)=f^{\prime}(g(0)) g^{\prime}(0)=f^{\prime}(5) g^{\prime}(0)=10 \cdot 7=70$.

Q-3) Find $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\sqrt{n^{2}+3 k^{2}}\right) / n^{2}$.
Solution: (This is almost the same problem as Question 1 in Midterm Exam 2.)

$$
\begin{aligned}
\sum_{k=1}^{n}\left(\sqrt{n^{2}+3 k^{2}}\right) / n^{2} & =\sum_{k=1}^{n} \frac{1}{n} \sqrt{1+\left(\frac{\sqrt{3} k}{n}\right)^{2}} \\
& =\frac{1}{\sqrt{3}} \sum_{k=1}^{n} \frac{\sqrt{3}}{n} \sqrt{1+\left(\frac{\sqrt{3} k}{n}\right)^{2}} \\
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\sqrt{n^{2}+3 k^{2}}\right) / n^{2} & =\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} \sqrt{1+x^{2}} d x \\
& =\frac{1}{\sqrt{3}} \int_{0}^{\pi / 3} \sec { }^{3} \theta d \theta \\
& =\frac{1}{\sqrt{3}}\left(\frac{1}{2} \sec \theta \tan \theta+\left.\frac{1}{2} \ln |\sec \theta+\tan \theta|\right|_{0} ^{\pi / 3}\right) \\
& =1+\frac{1}{2 \sqrt{3}} \ln (2+\sqrt{3}) \\
& \approx 1.38 .
\end{aligned}
$$

Q-4) The solid in the figure below is cut from a vertical cylinder of radius 10 cm by two planes making angles of 60° with the horizontal. Find its volume.

(This is Exercise 4 on page 454 of your textbook.)
Solution is on next page:

The equation of the cylinder is $x^{2}+y^{2}=100$. The coordinates of the points a and b are

$$
a=\left(\sqrt{100-y^{2}}, y, 0\right), \text { and } b=\left(\sqrt{100-y^{2}}, y, 10 \sqrt{3}-\sqrt{3} y\right)
$$

The area of the shaded rectangle is

$$
A(y)=2 \sqrt{100-y^{2}}(10 \sqrt{3}-\sqrt{3} y)
$$

Then volume is

$$
\begin{aligned}
V & =2 \int_{0}^{10} A(y) d y \\
& =4 \sqrt{3} \int_{0}^{10} \sqrt{100-y^{2}}(10-y) d y \\
& =40 \sqrt{3} \int_{0}^{10} \sqrt{100-y^{2}} d y-4 \sqrt{3} \int_{0}^{10} y \sqrt{100-y^{2}} d y \\
& =40 \sqrt{3}\left(100 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta\right)-4 \sqrt{3}\left(\frac{1}{2} \int_{0}^{100} u^{1 / 2} d u\right) \\
& =40 \sqrt{3}(25 \pi)-4 \sqrt{3}\left(\frac{1000}{3}\right) \\
& =1000 \sqrt{3}\left(\pi-\frac{4}{3}\right) \\
& \approx 3132 .
\end{aligned}
$$

Q-5) Aliye can run twice as fast as she can swim. She is standing at point A on the edge of a circular swimming pool 40 m in diameter, and she wishes to get to the diametrically opposite point B as quickly as possible. She can run around the edge to point C, then swim directly from C to B. Where should C be chosen to minimize the total time taken to get from A to B ?

Solution: (This is Example 5, solved in detail, on page 262 of your textbook.)
Suppose Aliye swims at the rate $k \mathrm{~m} / \mathrm{sec}$ and hence runs at $2 k \mathrm{~m} / \mathrm{sec}$. If $t=t(\theta)$ is the total time it takes for her to go from A to B via C, then the function to minimize is

$$
t(\theta)=\frac{20 \theta}{2 k}+\frac{40}{k} \sin \frac{\pi-\theta}{2}, \quad \theta \in[0, \pi] .
$$

For critical points we solve

$$
t^{\prime}(\theta)=\frac{10}{k}-\frac{20}{k} \cos \frac{\pi-\theta}{2}=0,
$$

which gives

$$
\cos \frac{\pi-\theta}{2}=\frac{1}{2}, \frac{\pi-\theta}{2}=\frac{\pi}{3}, \theta=\frac{\pi}{3} .
$$

To find the minimum, we evaluate

$$
t(0)=\frac{40}{k}, t\left(\frac{\pi}{3}\right) \approx \frac{45}{k}, t(\pi) \approx \frac{31}{k}
$$

Thus for shortest time, C must be situated at B. In other words, to reach to B as quickly as possible, Aliye should run all the way around the pool.

