\qquad
\qquad

Math 113 Calculus - Homework 1

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $f:(a, b) \longrightarrow \mathbb{R}$ be a differentiable function. Assume that for some $x_{0} \in(a, b), \lim _{x \rightarrow x_{0}} f^{\prime}(x)$ exists and is L. Show that $f^{\prime}\left(x_{0}\right)=L$.

Solution:

Assume not. Without loss of generality say $L>f^{\prime}\left(x_{0}\right)$. Choose an $\epsilon>0$ with $f^{\prime}\left(x_{0}\right)<L-\epsilon$. Using the definition of limit, to this $\epsilon>0$ there corresponds a $\delta>0$ such that for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$, $x \neq x_{0}$, we must have $\left|f^{\prime}(x)-L\right|<\epsilon$, in particular $L-\epsilon<f^{\prime}(x)$.

Now choose any K with $f^{\prime}\left(x_{0}\right)<K<L-\epsilon$. and any x_{1} with $x_{0}<x_{1}<x_{0}+\delta$. On the interval [x_{0}, x_{1}] we have $f^{\prime}\left(x_{0}\right)<K<L-\epsilon<f^{\prime}\left(x_{1}\right)$. It follows from our interpretation of the limit above that there is no $x \in\left(x_{0}, x_{1}\right)$ with the property $f^{\prime}(x)=K$, but this violates the Intermediate Property of the Derivative.

This contradiction proves that we must have $f^{\prime}\left(x_{0}\right)=L$.

Q-2) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Assume that f^{\prime} is not continuous at some $x_{0} \in \mathbb{R}$. Prove or disprove each of the following statements:
(i) It is possible that $\lim _{x \rightarrow x_{0}^{+}} f^{\prime}(x)=f^{\prime}\left(x_{0}\right)$.
(ii) It is possible that $\lim _{x \rightarrow x_{0}^{+}} f^{\prime}(x)=L \neq f^{\prime}\left(x_{0}\right)$.
(iii) It is possible that $\lim _{x \rightarrow x_{0}^{+}} f^{\prime}(x)=\infty$.

Solution:

(i) True. Define $f: \mathbb{R} \longrightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}0 & x \geq 0 \\ x^{2} \sin (1 / x) & x<0\end{cases}
$$

When $x>0, f^{\prime}(x) \equiv 0$.
When $x<0, f^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x)$ and $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)$ does not exist, so f^{\prime} is not continuous at the origin.

But we have $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0^{-}} \frac{x^{2} \sin (1 / x)}{x}=\lim _{x \rightarrow 0^{-}} x \sin (1 / x)=0$, and $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=$ $\lim _{x \rightarrow 0^{+}} 0=0$. Hence $f^{\prime}(0)$ exists and is zero.

Note that we also have $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} 0=0=f^{\prime}(0)$, so it is possible to have f with the property mentioned in (i).
(ii) and (iii) are false. The solution to problem 1 shows exactly why (ii) cannot be true. For (iii) take L to be any number strictly larger than $f^{\prime}\left(x_{0}\right)$. Now there exists a $\delta>0$ such that for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right), x \neq x_{0}$, we have $L<f^{\prime}(x)$. From here on follow the solution of problem 1.

Q-3) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Assume that $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in \mathbb{R}$.
Prove or disprove the following statement:
There exists a $\delta>0$ such that f is increasing (strictly or not) on the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$.

Solution:

This must be false. If $f^{\prime}(x)$ was positive throughout an interval, then f would be increasing on that interval. But the value of f^{\prime} at only one point does not say much about the behavior of f.

Consider the function

$$
f(x)= \begin{cases}x^{2} \sin (1 / x)+A x & x \neq 0 \\ 0 & x=0\end{cases}
$$

for some constant $A>0$. We can show, as we did in the previous solution, that $f^{\prime}(x)$ exists everywhere. We can easily show that $f^{\prime}(0)=A>0$.

We want to show that for any $\epsilon>0$, there exist $0<x_{1}<x_{2}<\epsilon$ such that $f\left(x_{1}\right)>f\left(x_{2}\right)$ showing that f cannot be increasing in any neighborhood of 0 . Let $n>0$ be an integer such that $x_{2}=\frac{2}{(4 n-1) \pi}<\epsilon$. Then $x_{1}=\frac{2}{(4 n+1) \pi}<x_{2}<\epsilon$.

It can be shown that for $A<\frac{2}{\pi}=0.637 \ldots$, we will have $f\left(x_{1}\right)>f\left(x_{2}\right)$ as required.
Here is the graph of $y=f(x)$ with $A=0.005$ and $x \geq 0:$

Q-4) Find all the points, if any exist, on this ellipse

$$
\frac{(x-2)^{2}}{9}+\frac{(y-3)^{2}}{4}=1
$$

satisfying the property that the line joining the point to the origin is tangent to the ellipse at that point.
(You may use a computer algebra program if need arises.)

Solution:

Explicitly differentiating the equation of the ellipse gives us

$$
y^{\prime}=-\frac{4}{9} \frac{x-2}{y-3}
$$

as the slope of the tangent at a point on the ellipse. If the tangent passes through the origin, then its slope must be $\frac{y}{x}$. Thus we must solve simultaneously the equations

$$
-\frac{4}{9} \frac{x-2}{y-3}=\frac{y}{x} \quad \text { and } \quad \frac{(x-2)^{2}}{9}+\frac{(y-3)^{2}}{4}=1
$$

The solutions are

$$
(x, y)=\left(\frac{1}{97}(122-27 \sqrt{61}), \frac{1}{97}(183+8 \sqrt{61})\right) \approx(-0.9,2.5)
$$

and

$$
(x, y)=\left(\frac{1}{97}(122+27 \sqrt{61}), \frac{1}{97}(183-8 \sqrt{61})\right) \approx(3.4,1.2)
$$

Q-5) Find the equation of the tangent line to the curve $x^{2} y^{3}-x^{3} y^{2}=4$ at the point $(1,2)$. Show that there is no point $p=\left(x_{0}, y_{0}\right)$ on the curve where the tangent line to the curve at p passes also from the origin.

Solution:

Implicitly differentiate the given equation and solve for y^{\prime} to find

$$
y^{\prime}=\frac{3 x y-2 y^{2}}{3 x y-2 x^{2}} .
$$

Putting in $(x, y)=(1,2)$, we find that $y^{\prime}=-1 / 2$. Thus the equation of the tangent line is

$$
y=-\frac{1}{2}(x-1)+2
$$

If the tangent line at (x, y) on the curve passes through the origin, then we must have

$$
\frac{3 x y-2 y^{2}}{3 x y-2 x^{2}}=\frac{y}{x}
$$

which forces $x=y$ but no such point exists on our curve. Hence no tangent passes through the origin.

