\qquad
\qquad

Math 113 Calculus - Homework 1

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let $f:(a, b) \longrightarrow \mathbb{R}$ be a differentiable function. Assume that for some $x_{0} \in(a, b), \lim _{x \rightarrow x_{0}} f^{\prime}(x)$ exists and is L. Show that $f^{\prime}\left(x_{0}\right)=L$.

Q-2) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Assume that f^{\prime} is not continuous at some $x_{0} \in \mathbb{R}$. Prove or disprove each of the following statements:
(i) It is possible that $\lim _{x \rightarrow x_{+}^{+}} f^{\prime}(x)=f^{\prime}\left(x_{0}\right)$.
(ii) It is possible that $\lim _{x \rightarrow x_{0}^{+}} f^{\prime}(x)=L \neq f^{\prime}\left(x_{0}\right)$.
(iii) It is possible that $\lim _{x \rightarrow x_{0}^{+}} f^{\prime}(x)=\infty$.

Q-3) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Assume that $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in \mathbb{R}$. Prove or disprove the following statement:

There exists a $\delta>0$ such that f is increasing (strictly or not) on the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$.

Q-4) Find all the points, if any exist, on this ellipse

$$
\frac{(x-2)^{2}}{9}+\frac{(y-3)^{2}}{4}=1
$$

satisfying the property that the line joining the point to the origin is tangent to the ellipse at that point.
(You may use a computer algebra program if need arises.)

Q-5) Find the equation of the tangent line to the curve $x^{2} y^{3}-x^{3} y^{2}=4$ at the point $(1,2)$. Show that there is no point $p=\left(x_{0}, y_{0}\right)$ on the curve where the tangent line to the curve at p passes also from the origin.

