\qquad
\qquad

Math 113 Calculus - Homework 2 - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail, unless otherwise stated. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Write the derivatives of the following functions. No partials. Do not show your work.

- $f(x)=x^{3 x}, f^{\prime}(x)=x^{3 x}(3 \ln x+3)$.
- $f(x)=(\tan x)^{\sec x}, f^{\prime}(x)=(\tan x)^{\sec x}\left(\sec x \tan x \ln \tan x+\frac{\sec ^{3} x}{\tan x}\right)$.
- $f(x)=\ln \left(\cosh x^{2}\right), f^{\prime}(x)=\frac{2 x \sinh x^{2}}{\cosh x^{2}}$.
- $f(x)=x \arctan x^{2}, f^{\prime}(x)=\arctan x^{2}+\frac{2 x^{2}}{1+x^{4}}$.
- $f(x)=x^{1 / \ln x}, \quad f^{\prime}(\pi)=0$
- $f(x)=5^{x}-x^{5}, f^{\prime}(x)=5^{x} \ln 5-5 x^{4}$.
- $f(x)=x^{\ln x}, f^{\prime}(e)=2$.
- $f(x)=\frac{x^{6}-x^{4}+1}{4 x^{3}+x-1}, f^{\prime}(0)=-1$.
- Given: $g(0)=1, g(3)=17, g(8)=0, f(0)=71, f(3)=-1, f(8)=\sqrt{2}$,
$g^{\prime}(0)=\pi, g^{\prime}(3)=\pi^{e}, g^{\prime}(8)=e, f^{\prime}(0)=2^{e}, f^{\prime}(3)=\ln 3, f^{\prime}(8)=e^{\sqrt{2}}$.
If $h(x)=f(3 g(x)+5)$, then $h^{\prime}(0)=3 e^{\sqrt{2}}$.
- Given: $f(5)=\pi / 3, f^{\prime}(5)=\pi / 4, g(5)=1, g^{\prime}(5)=0, g^{\prime}(\sqrt{2} / 2)=5$,
$g^{\prime}(\sqrt{3} / 2)=7, g(1 / 2)=\pi, g(\pi / 4)=11$.
If $h(x)=g(\sin (f(x)))$, then $h^{\prime}(5)=\frac{7 \pi}{8}$.

Q-2) Show that for any $x>-1$ and for any integer $n \geq 0$,

$$
(1+x)^{n} \geq 1+n x
$$

Solution: We will give two proofs. The first one uses induction.
First of all, the fact that $x>1$ is necessary so that we don't talk about powers of negative numbers which are sometimes imaginary.

Clearly the statement is true for $n=0$. Assume that it is true for n and check what happens for $n+1$. $(1+x)^{n+1}=(1+x)^{n}(1+x) \geq(1+n x)(1+x)$ by induction hypothesis and because $1+x>0$.

But we also have

$$
(1+n x)(1+x)=1+(n+1) x+n x^{2} \geq 1+(n+1) x \text { since } n x^{2} \geq 0
$$

This then shows that the statement holds for $n+1$ when it holds for n, completing the proof.
For the second proof, observe that the statement is clearly true for $n=0$ and $n=1$. So assume $n \geq 2$ and consider the function

$$
f(x)=(1+x)^{n}-(1+n x) \text { for } x \geq 1
$$

We check the derivative of this function.

$$
f^{\prime}(x)=n(1+x)^{n-1}-n
$$

which is negative for $-1 \leq x<0$, positive for $x>0$ and zero for $x=0$. Since $f(-1)=n-1>0$ and $f(0)=0$, we conclude that $f(x) \geq 0$ for all $x \leq-1$.

Q-3) Sketch the graph of $f(x)=\frac{x+1}{x^{2}+1}$. Find the absolute minimum and maximum values of f.
Solution: We first observe what we can without using the derivative.

$$
\lim _{x \rightarrow \pm \infty} f(x)=0 . f(x)<0 \text { for } x<-1 . f(x)>0 \text { for } x>-1 . f(-1)=0 . f(0)=1
$$

Next we check the derivative. $f^{\prime}(x)=-\frac{\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)}{\left(x^{2}+1\right)^{2}}$, where
$\alpha_{1}=-1+\sqrt{2} \approx 0.4$ and $\alpha_{2}=-1-\sqrt{2} \approx-2.4$.
Then we look at the second derivative. $f^{\prime \prime}(x)=\frac{2(x-1)\left(x-\beta_{1}\right)\left(x-\beta_{2}\right)}{\left(x^{2}+1\right)^{3}}$, where $\beta_{1}=-2+\sqrt{3} \approx 0.26$ and $\beta_{2}=-2-\sqrt{3} \approx-3.7$.

Putting these data together in a comparison table, we obtain the sketch of the graph.
The minimum value is $f\left(\alpha_{2}\right) \approx-0.2$ and the maximum value is $f\left(\alpha_{1}\right) \approx 1.2$.
Here is the table:

And here is the graph:

NAME:

Q-4) Sketch the graph of $f(x)=x^{2} e^{-x^{2}}$. Find the absolute minimum and maximum values of f.
Solution: Check that $\lim _{x \rightarrow \pm \infty} f(x)=0$.
Next $f^{\prime}(x)=-2 x(x-1) e^{-x^{2}}$, and $f^{\prime \prime}(x)=2\left(2 x^{4}-5 x^{2}+1\right) e^{-x^{2}}$.
The first derivative vanishes at $x=0$, and $x= \pm 1$.
The second derivative vanishes at $x= \pm \alpha$ and $x= \pm \beta$ where
$\alpha=\frac{\sqrt{5+\sqrt{17}}}{2} \approx 1.5$ and $\beta=\frac{\sqrt{5-\sqrt{17}}}{2} \approx 0.4$.
The minimum value is $f(0)=0$ and the maximum value is $f(\pm 1)=1 / e \approx 0.36$.
Here is the table:

And here is the graph:

Q-5) Approximate tan 1 with an absolute error less than $1 / 1000$, using the Taylor polynomials of $\sin x$ and $\cos x$.

Solution: We try the Taylor polynomials of $\sin x$ and $\cos x$ at $x=1$. The number of terms needed is determined by trial and error.

First observe that

$$
A=1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}<\cos 1<1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}+\frac{1}{8!}=B
$$

and

$$
C=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}<\sin 1<1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\frac{1}{9!}=D
$$

Then we clearly have

$$
1.557401 \approx \frac{C}{B}<\tan 1<\frac{D}{A} \approx 1.557478
$$

Since $\frac{D}{A}-\frac{C}{B} \approx 0.00007$, we can take as $\tan 1$ the value

$$
\tan 1 \approx \frac{1}{2}\left(\frac{D}{A}+\frac{C}{B}\right) \approx 1.557440
$$

It would require around 25 terms from the Taylor expansion of $\tan x$ to find such an approximation and even then we would have a terrible time in controlling the error.

