NAME:....

Ali Sinan Sertöz

STUDENT NO:.....

Math 113 Calculus – Homework 2 – Solutions

1	2	3	4	5	TOTAL	
20	20	20	20	20	100	

Please do not write anything inside the above boxes!

Check that there are 5 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail, unless otherwise stated. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Write the derivatives of the following functions. No partials. Do not show your work.

•
$$f(x) = x^{3x}$$
, $f'(x) = x^{3x}(3\ln x + 3)$.

•
$$f(x) = (\tan x)^{\sec x}$$
, $f'(x) = (\tan x)^{\sec x} (\sec x \tan x \ln \tan x + \frac{\sec^3 x}{\tan x})$.

•
$$f(x) = \ln(\cosh x^2), \quad f'(x) = \frac{2x \sinh x^2}{\cosh x^2}.$$

•
$$f(x) = x \arctan x^2$$
, $f'(x) = \arctan x^2 + \frac{2x^2}{1+x^4}$.

•
$$f(x) = x^{1/\ln x}, \quad f'(\pi) = 0$$

•
$$f(x) = 5^x - x^5$$
, $f'(x) = 5^x \ln 5 - 5x^4$.

•
$$f(x) = x^{\ln x}, f'(e) = 2.$$

•
$$f(x) = \frac{x^6 - x^4 + 1}{4x^3 + x - 1}, f'(0) = -1.$$

• Given: g(0) = 1, g(3) = 17, g(8) = 0, f(0) = 71, f(3) = -1, $f(8) = \sqrt{2}$, $g'(0) = \pi$, $g'(3) = \pi^e$, g'(8) = e, $f'(0) = 2^e$, $f'(3) = \ln 3$, $f'(8) = e^{\sqrt{2}}$.

If
$$h(x) = f(3g(x) + 5)$$
, then $h'(0) = 3e^{\sqrt{2}}$.

• Given: $f(5) = \pi/3$, $f'(5) = \pi/4$, g(5) = 1, g'(5) = 0, $g'(\sqrt{2}/2) = 5$, $g'(\sqrt{3}/2) = 7$, $g(1/2) = \pi$, $g(\pi/4) = 11$.

If $h(x) = g(\sin(f(x)))$, then $h'(5) = \frac{7\pi}{8}$.

NAME:

STUDENT NO:

Q-2) Show that for any x > -1 and for any integer $n \ge 0$,

$$(1+x)^n \ge 1+nx.$$

Solution: We will give two proofs. The first one uses induction.

First of all, the fact that x > 1 is necessary so that we don't talk about powers of negative numbers which are sometimes imaginary.

Clearly the statement is true for n = 0. Assume that it is true for n and check what happens for n + 1.

$$(1+x)^{n+1} = (1+x)^n(1+x) \ge (1+nx)(1+x)$$
 by induction hypothesis and because $1+x > 0$.

But we also have

$$(1+nx)(1+x) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$
 since $nx^2 \ge 0$.

This then shows that the statement holds for n + 1 when it holds for n, completing the proof.

For the second proof, observe that the statement is clearly true for n = 0 and n = 1. So assume $n \ge 2$ and consider the function

$$f(x) = (1+x)^n - (1+nx)$$
 for $x \ge 1$.

We check the derivative of this function.

$$f'(x) = n(1+x)^{n-1} - n$$

which is negative for $-1 \le x < 0$, positive for x > 0 and zero for x = 0. Since f(-1) = n - 1 > 0 and f(0) = 0, we conclude that $f(x) \ge 0$ for all $x \le -1$.

STUDENT NO:

Q-3) Sketch the graph of $f(x) = \frac{x+1}{x^2+1}$. Find the absolute minimum and maximum values of f.

Solution: We first observe what we can without using the derivative.

$$\lim_{x \to \pm \infty} f(x) = 0. \ f(x) < 0 \text{ for } x < -1. \ f(x) > 0 \text{ for } x > -1. \ f(-1) = 0. \ f(0) = 1.$$

Next we check the derivative. $f'(x) = -\frac{(x - \alpha_1)(x - \alpha_2)}{(x^2 + 1)^2}$, where $\alpha_1 = -1 + \sqrt{2} \approx 0.4$ and $\alpha_2 = -1 - \sqrt{2} \approx -2.4$.

Then we look at the second derivative. $f''(x) = \frac{2(x-1)(x-\beta_1)(x-\beta_2)}{(x^2+1)^3}$, where $\beta_1 = -2 + \sqrt{3} \approx 0.26$ and $\beta_2 = -2 - \sqrt{3} \approx -3.7$.

Putting these data together in a comparison table, we obtain the sketch of the graph. The minimum value is $f(\alpha_2) \approx -0.2$ and the maximum value is $f(\alpha_1) \approx 1.2$. Here is the table:

	-00 -3	3.7 -2	.4 -1	-0	.2 0	0,1	ſ	1 +00
f	0		¢	>	1			0
f′	Second Second	- 0	> +	t	Ŧ	+ (> ~	4005kingdy
f″	- (> +	+	+ (> ~		annaithe a	ϕ +
	\cap	\sim	\sim	\sim	\sim	\sim	\sim	~
	>	X	2	. ~7	~7	~	Ń	Z

And here is the graph:

NAME:

NAME:

STUDENT NO:

Q-4) Sketch the graph of $f(x) = x^2 e^{-x^2}$. Find the absolute minimum and maximum values of f. Solution: Check that $\lim_{x \to \pm \infty} f(x) = 0$.

Next $f'(x) = -2x(x-1)e^{-x^2}$, and $f''(x) = 2(2x^4 - 5x^2 + 1)e^{-x^2}$.

The first derivative vanishes at x = 0, and $x = \pm 1$.

The second derivative vanishes at $x = \pm \alpha$ and $x = \pm \beta$ where $\alpha = \frac{\sqrt{5 + \sqrt{17}}}{2} \approx 1.5$ and $\beta = \frac{\sqrt{5 - \sqrt{17}}}{2} \approx 0.4$.

The minimum value is f(0) = 0 and the maximum value is $f(\pm 1) = 1/e \approx 0.36$. Here is the table:

	-00 -1.	s -1	-0	.4 0) 0,	ધ ા	1	·5 +00
f	0		,	0	>			0
f'	ー	· + ¢) ~	- (2 +	+	0 ~	
f″	+ 0) (p +	+ 0	> -	Racenty	0+
	\cup	~	\sim	• •	\smile	\sim	~	
	7	7	Z	3	7	7	>	\rightarrow

And here is the graph:

STUDENT NO:

NAME:

Q-5) Approximate $\tan 1$ with an absolute error less than 1/1000, using the Taylor polynomials of $\sin x$ and $\cos x$.

Solution: We try the Taylor polynomials of $\sin x$ and $\cos x$ at x = 1. The number of terms needed is determined by trial and error.

First observe that

$$A = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} < \cos 1 < 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \frac{1}{8!} = B$$

and

$$C = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} < \sin 1 < 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \frac{1}{9!} = D.$$

Then we clearly have

$$1.557401 \approx \frac{C}{B} < \tan 1 < \frac{D}{A} \approx 1.557478.$$

Since $\frac{D}{A} - \frac{C}{B} \approx 0.00007$, we can take as $\tan 1$ the value

$$\tan 1 \approx \frac{1}{2} \left(\frac{D}{A} + \frac{C}{B} \right) \approx 1.557440.$$

It would require around 25 terms from the Taylor expansion of $\tan x$ to find such an approximation and even then we would have a terrible time in controlling the error.