\qquad
\qquad

Math 113 Calculus - Homework 2

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail, unless otherwise stated. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Write the derivatives of the following functions. No partials. Do not show your work.

- $f(x)=x^{3 x}, \quad f^{\prime}(x)=$
- $f(x)=(\tan x)^{\sec x}, \quad f^{\prime}(x)=$
- $f(x)=\ln \left(\cosh x^{2}\right), \quad f^{\prime}(x)=$
- $f(x)=x \arctan x^{2}, f^{\prime}(x)=$
- $f(x)=x^{1 / \ln x}, \quad f^{\prime}(\pi)=$
- $f(x)=5^{x}-x^{5}, f^{\prime}(x)=$
- $f(x)=x^{\ln x}, f^{\prime}(e)=$
- $f(x)=\frac{x^{6}-x^{4}+1}{4 x^{3}+x-1}, f^{\prime}(0)=$
- Given: $g(0)=1, g(3)=17, g(8)=0, f(0)=71, f(3)=-1, f(8)=\sqrt{2}$, $g^{\prime}(0)=\pi, g^{\prime}(3)=\pi^{e}, g^{\prime}(8)=e, f^{\prime}(0)=2^{e}, f^{\prime}(3)=\ln 3, f^{\prime}(8)=e^{\sqrt{2}}$.

If $h(x)=f(3 g(x)+5)$, then $h^{\prime}(0)=$

- Given: $f(5)=\pi / 3, f^{\prime}(5)=\pi / 4, g(5)=1, g^{\prime}(5)=0, g^{\prime}(\sqrt{2} / 2)=5$,
$g^{\prime}(\sqrt{3} / 2)=7, g(1 / 2)=\pi, g(\pi / 4)=11$.
If $h(x)=g(\sin (f(x)))$, then $h^{\prime}(5)=$

Q-2) Show that for any $x>-1$ and for any integer $n \geq 0$,

$$
(1+x)^{n} \geq 1+n x
$$

Q-3) Sketch the graph of $f(x)=\frac{x+1}{x^{2}+1}$. Find the absolute minimum and maximum values of f.

Q-4) Sketch the graph of $f(x)=x^{2} e^{-x^{2}}$. Find the absolute minimum and maximum values of f.

Q-5) Approximate tan 1 with an absolute error less than $1 / 1000$, using the Taylor polynomials of $\sin x$ and $\cos x$.

