STUDENT NO: 1

Math 113 Calculus -	Midterm Exam	1 – Solutions
---------------------	--------------	---------------

1	2	3	4	5	TOTAL
20	20	20	20	20	100
20	20	20	20	20	100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. **Also note that** "Yolum doğru, bir tek işlem hatası yapmışım." translates as "I apologize for writing this garbage!" Your answer is credited up to the first instance where you make a mistake. The rest is considered a garbage and your apology is accepted.

You should strive for excellence as if it is essential, because in the final analysis it is.

Q-1) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function. Assume that f' is <u>not</u> continuous at x = 0. Prove or disprove the following statement:

It is possible that
$$\lim_{x\to 0^+} f'(x) = L$$
 for some $L > f'(0)$.

Solution:

This is not possible; it violates the intermediate value property of the derivative.

Assume to the contrary that $\lim_{x\to 0^+} f'(x) = L$ for some L > f'(0).

Since L > f'(0), we can find an $\epsilon > 0$ and $K \in \mathbb{R}$ such that $f'(0) < K < L - \epsilon$.

Since $\lim_{x\to 0^+} f'(x) = L$, for the above $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in (0, \delta)$ we must have $K < L - \epsilon < f'(x)$.

In particular, pick any $x_0 \in (0, \delta)$. While we clearly have $f'(0) < K < L - \epsilon < f'(x_0)$, there is no $x \in (0, x_0)$ satisfying f'(x) = K. This violates the intermediate value property of the derivative.

STUDENT NO:

Q-2) Write your answers to the space provided. No partial credits.

•
$$f(x) = x^{x}, f'(x) = x^{x}(\ln x + 1).$$

• $f(x) = x^{\pi} - \pi^{x}, f'(x) = \pi x^{\pi - 1} - \pi^{x}(\ln \pi).$
• $f(x) = \arctan[x + \ln(x^{3} - 1)], f'(x) = \frac{1}{1 - 1} (x^{2} - 1) + \frac{1}$

•
$$f(x) = \arctan[x + \ln(x^3 - 1)], f'(x) = \frac{1}{1 + [x + \ln(x^3 - 1)]^2} \cdot (1 + \frac{1}{x^3 - 1} \cdot (3x^2)).$$

• $f(0) = 5, f'(0) = 10, f(7) = -3, f'(7) = -6, g(0) = 7, g'(0) = 8, g(7) = 11, g'(7) = 22$

$$\lim_{x \to 0} \frac{f(g(x)) - f(g(0))}{x} = (f \circ g)'(0) = f'(g(0))g'(0) = f'(7) \cdot 8 = -6 \cdot 8 = -48.$$

NAME:

STUDENT NO:

Q-3) Let y = f(x) be a curve in \mathbb{R}^2 , where f is a differentiable function. Let $p_0 = (x_0, y_0) \in \mathbb{R}^2$ be a point not on the curve. Let y = L(x) be a line through p_0 and tangent to the curve at $p_1 = (x_1, y_1)$ on the curve. Describe how you solve for x_1 .

Let $f(x) = x^x$ and $p_0 = (e - 1/2, 0)$ in the above set up. Find $x_1 > 1$ as you described for the above question. (In this case you may have to solve a certain equation by inspection if analytic solution looks too complicated, *because if you have to solve an equation, then anything goes!*)

Solution:

A line through the points $p_0 = (x_0, y_0)$ and $p_1 = (x_1, y_1) = (x_1, f(x_1))$ has the slope $m = \frac{y_1 - y_0}{x_1 - x_0} = \frac{f(x_1) - y_0}{x_1 - x_0}$.

On the other hand, if this line is tangent to the curve at the point p_1 , then its slope is $m = f'(x_1)$.

Equating the two values of m we get $f'(x_1) = \frac{f(x_1) - y_0}{x_1 - x_0}$. We then solve this for x_1 .

When $(x_0, y_0) = (e - 1/2, 0)$ and $f(x) = x^x$, the equation to solve becomes:

$$(\ln x + 1)(x - e + \frac{1}{2}) = 1$$

one of whose solutions is readily seen to be x = e. There is another solution at x = 0.2228735...Here is the graph of $y = (\ln x + 1)(x - e + \frac{1}{2}) - 1$:

NAME:

STUDENT NO:

Q-4) Show that $f(x) = \frac{\ln x}{x}$ is increasing on (0, e) and decreasing on (e, ∞) .

Explain which of the following holds:

(i)
$$e^{\pi} > \pi^e$$
 (ii) $e^{\pi} < \pi^e$ (iii) $e^{\pi} = \pi^e$

Solution:

 $f'(x) = \frac{1 - \ln x}{x^2}$, so its sign depends only on the sign of $1 - \ln x$ which is positive on (0, e) and negative on (e, ∞) , thus the answer.

Below is a graph of $f(x) = \frac{\ln x}{x}$.

For $x_1, x_2 \in [e, \infty)$ with $x_1 < x_2$ we must have $\frac{\ln x_1}{x_1} > \frac{\ln x_2}{x_2}$ since f is decreasing there. Taking $x_1 = e$ and $x_2 = \pi$, we get

$$\frac{\ln e}{e} > \frac{\ln \pi}{\pi} \quad \text{or equivalently} \quad \pi \ln e > e \ln \pi \quad \text{or equivalently} \quad \ln e^{\pi} > \ln \pi^{e}$$

Since ln is one-to-one and increasing, we must then have

$$e^{\pi} > \pi^e$$
.

In fact $e^{\pi} \approx 23.14$ and $\pi^2 = 22.45$.

NAME:

STUDENT NO:

Q-5) Prove or disprove the following statement:

The plane curve $y = xe^{-\sin x}$ has only finitely many horizontal tangents.

Solution:

This is false. We can see it as follows:

If
$$y = xe^{-\sin x}$$
, then $y' = e^{-\sin x}(1 - x\cos x) = 0$ when $\cos x = \frac{1}{x}$.

Since $\cos x$ oscillates between -1 and +1 infinitely many times on $(0, \infty)$ and since $0 < \frac{1}{x} < 1$ for all $x \in (1, \infty)$, these two curves intersect infinitely many times on $(0, \infty)$ giving infinitely many horizontal tangent lines for our function y.

On the left below is a graph of $y = xe^{-\sin x}$, and on the right is a graph showing the intersections of $\cos x$ and $\frac{1}{x}$:

In fact here is the graph of the derivative y', where you can see the infinitely many vanishing points.

