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Math 113 Calculus – Midterm Exam 2 – Solutions
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Please do not write anything inside the above boxes!

Strive for excellence as if it is essential, because in the final analysis it is.

Q-1) Find the limit lim
n→∞

n∑
k=0

n

n2 + k2
.

Solution:

First observe that

n∑
k=0

n

n2 + k2
=

n∑
k=0

1

n

1

1 + (k/n)2
=

1

2n
+

n−1∑
k=0

n

n2 + k2
.

Consider the upper Riemann sum UR(f, Pn) for the function f(x) =
1

1 + x2
, on the interval [0, 1]

for the partition Pn = { 1
n
, . . . , k

n
, . . . , n

n
}:

UR(f, Pn) =
n−1∑
k=0

1

n

1

1 + (k/n)2
.

When n goes to infinity, the norm of the partition goes to zero and, since f is continuous on the
interval, the limit is the integral of f on [0, 1];

lim
n→∞

n∑
k=0

n

n2 + k2
= lim

n→∞

(
1

2n
+

n−1∑
k=0

n

n2 + k2

)
=

∫ 1

0

1

1 + x2
dx =

(
arctanx

∣∣∣1
0

)
=

π

4
.



NAME: STUDENT NO:

Q-2) Write your answers to the space provided. No partial credits.

• f(x) = xcosx, f ′(x) = xcosx
(
− sin x ln x+ cosx

x

)
• f(x) = tan(xπ − πx), f ′(x) = sec2(xπ − πx) (πxπ−1 + πx lnπ)

• f(x) =
(
ln(x3 + 7x− 1)

)4, f ′(x) =
4 (ln(x3 + 7x− 1))

3
(3x2 + 7)

x3 + 7x− 1
.

• f(x) = x4(tanx2)3, f ′(x) = 4x3(tanx2)3 + x4(3(tanx2)2 sec2 x2 2x).

• f(0) = 5, f ′(0) = 10, f(5) = −3, f ′(5) = −6, g(0) = 7, g′(0) = 8, g(5) = 11, g′(5) = 22

lim
x→0

g(f(x))− g(f(0))

x
= (g ◦ f)′ (0) = g′(f(0)) f ′(0) = g′(5)f ′(0) = 22 · 10 = 220.

lim
x→0

f(g(x))− f(g(0))

x
= (f ◦ g)′ (0) = f ′(g(0)) g′(0) = f ′(7)g′(0) = f ′(7) · 8.
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Q-3) We have a factory located at A. We want to transfer our goods to location D. There is a railroad
along the line BD, where B is the foot of the perpendicular from our factory to the railroad. The
distance from our factory to the railroad is 5km. The distance from B to D is 12km. The cost of
transport by truck along open field is α TL/km, and the cost of transport by railroad is β TL/km.
TCDD agrees to build a station wherever we want. We want to find the location of the station C
so that the cost of transport is minimized by carrying our goods from A to C by truck and loading
them to train to be carried to D.

A

B C D

i) Solve the problem for α = 5, β = 3. (15 points)
ii) For which values of α > 0 and β > 0, the solution will be C = B? (5 points)

Solution: Let BC = x. The function to minimize is

f(x) = α
√
25 + x2 + (12− x)β, x ∈ [0, 12].

Its derivative is
f ′(x) =

αx√
25 + x2

− β.

In particular f ′(0) = −β < 0, so the minimum never occurs at x = 0. This answers the second part.

When α = 5, β = 3, the solution of f ′(x) = 0 is at 15/4 ∈ [0, 12]. To decide if this gives the
minimum value or not we can do one of two things.

We either notice that
f ′′(x) =

25α

(25 + x2)3/2
> 0, for x ∈ [0, 12]

and conclude that x = 15/4 gives the minimum value,

or

we evaluate f at x = 15/4 and also at the end points

f(0) = 61, f(15/4) = 56, f(12) = 65,

and conclude that x = 15/4 = 3.75 gives the minimum.
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Q-4) Evaluate the integral ∫ π/3

0

sec7 x dx,

assuming that
∫ π/3

0
sec6 x dx ≈ 25/3 and

∫ π/3

0
sec5 x dx ≈ 21/4.

Solution: We first try integration by parts by choosing u = sec5 x and dv = sec2 x dx. This gives∫
sec7 x dx = sec5 x tanx− 5

∫
sec5 x tan2 x dx

= sec5 x tanx− 5

∫
sec5 x(sec2 x− 1)x dx

= sec5 x tanx− 5

∫
sec7 x dx+ 5

∫
sec5 x dx,

giving us ∫
sec7 x dx =

1

6
sec5 x tanx+

5

6

∫
sec5 x dx.

Finally, evaluating this from 0 to π/3 we get∫
sec7 x dx = 13.618, or using the above approximation ≈ 16√

3
+

35

8
= 13.612.
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Q-5) Evaluate the integral ∫
x

x2 + 2x+ 5
dx.

Solution:

x

x2 + 2x+ 5
=

1

2

(2x+ 2)− 2

x2 + 2x+ 5

=
1

2

(2x+ 2)

x2 + 2x+ 5
− 1

x2 + 2x+ 5

=
1

2

(2x+ 2)

x2 + 2x+ 5
− 1

4

1

(x+1
2
)2 + 1

dx

x2 + 2x+ 5
=

1

2

d(x2 + 2x+ 5)

x2 + 2x+ 5
− 1

2

d(x+1
2
)

(x+1
2
)2 + 1∫

x

x2 + 2x+ 5
dx =

1

2
ln(x2 + 2x+ 5)− 1

2
arctan(

x+ 1

2
) + C.


