$\qquad$
$\qquad$

Math 113 Calculus - Final Exam - Solutions

| 1 | 2 | 3 | 4 | 5 | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 20 | 20 | 20 | 20 | 20 | 100 |

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Every mathematical symbol and every equation you write must be part of a well constructed sentence. I will not read any hanging equations or symbols. I will not try to interpret your symbols. I will only grade what is written on your paper; I do not specialize in mind reading.


Q-1) Prove the Mean Value Theorem for Integrals: If $f$ is continuous on $[a, b]$, then there is a point $c \in(a, b)$ such that

$$
\int_{a}^{b} f(t) d t=f(c)(b-a) . \quad(20 \text { points })
$$

Give an example of an integrable function $f:[0,1] \rightarrow \mathbb{R}$ which is not continuous on $[0,1]$ but the above theorem still holds. (Prove your claim.) (Extra 10 points) Give another example of an integrable function $g:[0,1] \rightarrow \mathbb{R}$ which is not continuous on $[0,1]$ and the above theorem does not hold. (Prove your claim.). (Extra 10 points)

## Solution:

Since $f$ is continuous on $[a, b]$ it has a maximum and minimum there. Let $M$ and $m$ be the maximum and minimum of $f$ on $[a, b]$, respectively. Since

$$
m \leq f(x) \leq M \text { for } x \in[a, b]
$$

we have after integrating

$$
\int_{a}^{b} m d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} M d x
$$

This gives after evaluating the left and right hand integrals

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

Dividing both sides by $b-a$, we get

$$
m \leq \frac{\int_{a}^{b} f(x) d x}{b-a} \leq M
$$

Since $\frac{\int_{a}^{b} f(x) d x}{b-a}$ is a value between $m$ and $M$, by the intermediate value theorem there must exist a point $c \in(a, b)$ such that

$$
f(c)=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

which is the claim of the theorem.
Define two functions $f$ and $g$ on $[0,1]$ as follows.

$$
\begin{gathered}
f(x)= \begin{cases}1 & \text { if } x<1 / 2 \\
1 / 2 & \text { if } x=1 / 2 \\
0 & \text { if } x>1 / 2\end{cases} \\
g(x)= \begin{cases}x & \text { if } x \neq 1 / 2 \\
0 & \text { if } x=1 / 2\end{cases}
\end{gathered}
$$

Then

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} g(x) d x=\frac{1}{2}
$$

We have $f(1 / 2)=1 / 2$ but there is no point $c \in(0,1)$ such that $g(c)=1 / 2$. So the theorem holds for $f$ but not for $g$.

Q-2) Write your answers to the space provided. No partial credits.

- $f(x)=(\sin x)^{x}, f^{\prime}(x)=(\sin x)^{x}\left(\ln \sin x+\frac{x \cos x}{\sin x}\right)$.
- $f(x)=7 x^{3}-7^{x}, f^{\prime}(x)=21 x^{2}-7^{x} \ln 7$.
- $f(x)=\arctan \left(\frac{1}{1+x^{2}}\right), f^{\prime}(x)=\frac{1}{1+\left(\frac{1}{1+x^{2}}\right)^{2}} \frac{-2 x}{\left(1+x^{2}\right)^{2}}=\frac{-2 x}{x^{4}+2 x^{2}+2}$.
- $f(x)=\int_{x^{5}}^{x^{7}} \sin t^{3} d t, f^{\prime}(x)=7 x^{6} \sin x^{21}-5 x^{4} \sin x^{15}$.

Nothing below this line will be read on this page!

Q-3) Write your answers to the space provided. No partial credits.

- $\int x \sin 5 x d x=\frac{1}{25} \sin 5 x-\frac{1}{5} x \cos 5 x+C$.
- $\int x \ln x d x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C$.
- $\int \frac{x}{(1+x)(2+x)} d x=-\ln (1+x)+2 \ln (2+x)+C$.
- $\int x \sqrt{\left(\pi+3 x^{2}\right)} d x=\frac{1}{9}\left(\pi+3 x^{2}\right)^{3 / 2}+C$.
$\qquad$ Nothing below this line will be read on this page!

Q-4) Let $f(x)=x^{3}-9 x^{2}+15 x+17$. Fill in the blanks below. Each correct answer is 3 points.
(i) $f^{\prime}(x)=3 x^{2}-18 x+15$.
(ii) $f^{\prime \prime}(x)=6 x-18$.
(iii) Critical points of $f$ are $x=1 \quad$ and $x=5$
(iv) The inflection point of $f$ is $x=3$
(v) The maximum value of $f$ on $[0,8]$ occurs at $x=8$
(vi) The minimum value of $f$ on $[0,8]$ occurs at $x=5$
(vii) Sketch the graph of $f$ on $[0,8]$.


Q-5) Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}+2 y=1\right.$ and $\left.y \geq 0\right\}$. Revolve the region $D$ around $x$-axis and find the volume of the solid so obtained.

## Solution:

From $x^{2}+y^{2}+2 y=1$, we solve for $y$ and find that $y=\sqrt{2-x^{2}}-1$. The volume of the solid of revolution is

$$
\begin{aligned}
\pi \int_{-1}^{1} y^{2} d x & =\pi \int_{-1}^{1}\left(3-x^{2}-2 \sqrt{2-x^{2}}\right) d x \\
& =\pi\left(3 x-\frac{1}{3} x^{3}-x \sqrt{2-x^{2}}-\left.2 \arcsin \frac{x}{\sqrt{2}}\right|_{-1} ^{1}\right) \\
& =\pi\left(\frac{10}{3}-\pi\right) \\
& \approx 0.6
\end{aligned}
$$

