\qquad

Math 113 Calculus - Homework 1

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Consider the function $f(x)=\frac{1}{x}$ for $x>0$.
For each given $\epsilon>0$ and for each $x_{0}>0$, find explicitly a $\delta>0$ (which usually depends both on ϵ and x_{0}) such that for all $x>0$ with $\left|x-x_{0}\right|<\delta$ we will have $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

Q-2) Consider the function $f(x)=\frac{1}{x}$ for $x>0$.
Prove or disprove that given any $\epsilon>0$, there exists a $\delta>0$ (which depends only on ϵ) such that for all $x, y>0$ with $|x-y|<\delta$ we will have $|f(x)-f(y)|<\epsilon$.

Q-3) Consider the function $f(x)=\frac{1}{x}$ for $x \in[1,5]$.
Prove or disprove that given any $\epsilon>0$, there exists a $\delta>0$ (which depends only on ϵ) such that for all $x, y \in[1,5]$ with $|x-y|<\delta$ we will have $|f(x)-f(y)|<\epsilon$.

Q-4) Consider the function $f(x)=\frac{1}{x}$ for $x \in[1, \infty)$.
Prove or disprove that given any $\epsilon>0$, there exists a $\delta>0$ (which depends only on ϵ) such that for all $x, y \in[1, \infty)$ with $|x-y|<\delta$ we will have $|f(x)-f(y)|<\epsilon$.

