\qquad

Math 113 Calculus - Makeup Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Every mathematical symbol and every equation you write must be part of a well constructed sentence. I will not read any hanging equations or symbols. I will not try to interpret your symbols. I will only grade what is written on your paper; I do not specialize in mind reading.

Q-1) Assuming that a continuous function on a closed and bounded interval is bounded, prove that it takes its minimum and maximum on that interval. Explain where you use the conditions closed and bounded.

Solution:

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Since we are assuming that f is bounded, its range is a bounded subset of \mathbb{R} and has a supremum M, and an infimum m. Assume f never takes M on $[a, b]$. Then the function

$$
g(x)=\frac{1}{M-f(x)}
$$

is well defined and continuous on $[a, b]$, hence is bounded there, say

$$
0 \leq g(x) \leq K
$$

for some $K>0$. This however gives

$$
f(x)<M-\frac{1}{K},
$$

which contradicts the fact that M was supremum of the values of f. Hence, f must take M somewhere on $[a, b]$.

The minimum case is exactly the same.
The closed and bounded conditions are used in the proof of the theorem which says that a continuous function is bounded.

Q-2) Write your answers to the space provided. No partial credits.

- $f(x)=(\cos x)^{x}+x^{\cos x}, f^{\prime}(x)=(\cos x)^{x}[\ln \cos x+x \tan x]+x^{\cos x}[-\sin x \ln x+\cos x / x]$.
- $f(x)=x^{3}-7^{x}+x^{x}, f^{\prime}(x)=3 x^{2}-7^{x} \ln 7+x^{x}[\ln x+1]$.
- $f(x)=\arctan (x+\ln (x)), f^{\prime}(x)=\frac{1+1 / x}{1+(x+\ln x)^{2}}$.
- $f(x)=\int_{x^{3}}^{x^{5}} \arcsin t^{7} d t, f^{\prime}(x)=5 x^{4} \arcsin x^{35}-3 x^{2} \arcsin x^{21}$.
\qquad Nothing below this line will be read on this page!

Q-3) Write your answers to the space provided. No partial credits.

- $\int x \sin \left(5 x^{2}\right) d x=-\frac{1}{10} \cos \left(5 x^{2}\right)+C$.
- $\int x(\ln x)^{2} d x=\frac{1}{2} x^{2}(\ln x)^{2}-\frac{1}{2} x^{2} \ln x+\frac{x^{2}}{4}+C$.
- $\int \frac{x}{(1+x)\left(1+x^{2}\right)} d x=-\frac{1}{2} \ln (1+x)+\frac{1}{4} \ln \left(1+x^{2}\right)+\frac{1}{2} \arctan x+C$.
- $\int x^{2} \sqrt{\left(e+5 x^{3}\right)} d x=\frac{2}{45}\left(e+5 x^{3}\right)^{3 / 2}+C$.
\qquad Nothing below this line will be read on this page!

Q-4) Plot the graph of $f(x)=2 x^{3}+3 x^{2}-120 x+1$.

Solution:

$f^{\prime}(x)=6(x-4)(x+5), f^{\prime \prime}(x)=6(2 x+1)$.

Q-5) Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}+2 y=1\right.$ and $\left.x, y \geq 0\right\}$. Revolve the region D around y-axis and find the volume of the solid so obtained.

Solution:

Slice method: $\pi \int_{0}^{\sqrt{2}-1}\left(1-2 y-y^{2}\right) d y=\pi\left(\frac{4 \sqrt{2}-5}{3}\right) \approx 0.68$.
Cylindrical shell method: $2 \pi \int_{0}^{1}(x \sqrt{2-x}-x) d x=\pi\left(\frac{4 \sqrt{2}-5}{3}\right) \approx 0.68$.

