\qquad

Math 113 Calculus - Midterm Exam 1 - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Every mathematical symbol and every equation you write must be part of a well constructed sentence. I will not read any hanging equations or symbols. I will not try to interpret your symbols.

Q-1) Is $f(x)=\frac{1}{x}$ uniformly continuous on $(0, \infty)$? Prove your claim.
Solution:
f is not uniformly continuous here. We will assume uniform continuity and reach a contradiction.
Choose $\epsilon=1$. Let $\delta>0$ be the corresponding δ such that for any x, y in the domain $|x-y|<\delta$ implies $|f(x)-f(y)|<1$.

Choose x, y in the domain such that $|x-y|=\delta / 2$. Then

$$
|f(x)-f(y)|=\frac{|x-y|}{x y}=\frac{\delta}{2 x y}<1
$$

or equivalently

$$
0<\delta<2 x y \text { for all } x, y \text { in the domain with }|x-y|=\delta / 2
$$

But this is clearly absurd since x and y can be chosen as small as we like and $2 x y$ cannot always remain above a fixed δ.

We conclude that f is not uniformly continuous on $(0, \infty)$.

Q-2) Is the following function differentiable at $x=0$? Prove your claim.

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Solution:

This function is differentiable at $x=0$. We use the definition of derivative to show this. First observe that

$$
\frac{f(h)-f(0)}{h}=h \sin \frac{1}{h}
$$

and

$$
0 \leq\left|\frac{f(h)-f(0)}{h}\right|=\left|h \sin \frac{1}{h}\right| \leq|h|
$$

since $|\sin t| \leq 1$ for all t. But now using the squeeze theorem we conclude that

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=0
$$

and f is differentiable at $x=0$ with $f^{\prime}(0)=0$.

Q-3) Write your answers to the space provided. No partial credits.

- $f(x)=x^{\cos x}, f^{\prime}(x)=x^{\cos x}(-\sin x \ln x+(\cos x) / x)$.
- $f(x)=x^{5}-7^{x}, f^{\prime}(x)=5 x^{4}-7^{x} \ln 7$.
- $f(x)=\sin (\ln (\cos x)), f^{\prime}(x)=\cos (\ln (\cos x))(1 / \cos x)(-\sin x)$.

For the next two questions assume that $f(x)=x^{2}+x+1$ and $g(x)=\cos \pi x-\sin \pi x$.

- $(f \circ g)^{\prime}(0)=-3 \pi$.
- $(g \circ f)^{\prime}(0)=\pi$.

Q-4) Let $f(x)=\arctan \left(\frac{x-1}{x+1}\right)-\arctan x$.
Find the domain of this function, (5 points), and calculate explicitly $f(\sqrt{3})$, (15 points).

Solution:

The domain is $\mathbb{R}-\{-1\}$. Check directly that $f^{\prime}(x)=0$ for all x in the domain, so the function is constant.

Hence $f(\sqrt{3})=f(0)=\arctan (-1)=-\pi / 4$.

Q-5) Assume that the equation

$$
e^{x y} \ln \frac{x}{y}-x-\frac{1}{y}=0
$$

defines y as a differentiable function of x. Find y^{\prime} at the point $\left(e, \frac{1}{e}\right)$.

Solution:

Differentiate implicitly with respect to x, keeping in mind that y is a function of x. You will get

$$
e^{x y}\left(y+x y^{\prime}\right) \ln \frac{x}{y}+e^{x y} \frac{y}{x} \frac{y-x y^{\prime}}{y^{2}}-1+\frac{y^{\prime}}{y^{2}}=0 .
$$

Now put $x=e$ and $y=1 / e$, solve for y^{\prime} and find

$$
y^{\prime}=-e^{-2}
$$

