Date: 20 May 2005, Thursday
Q-1) Evaluate the following line integral

$$
\int_{C} \frac{x^{2}}{1+y} d x+e^{x y} x d y
$$

where C is the curve $y=x^{2}$ from the point $A(0,0)$ to the point $B(1,1)$.
Solution. Call the given line integral I. So

$$
I=\int_{C} \frac{x^{2}}{1+y} d x+e^{x y} x d y
$$

Parameterize C as $C: \overrightarrow{\mathbf{r}}(t)=t \overrightarrow{\mathbf{i}}+t^{2} \overrightarrow{\mathbf{j}}, 0 \leq t \leq 1$. Substituting $x=t, y=t^{2}$ into I we get

$$
\begin{aligned}
I & =\int_{0}^{1}\left(\frac{t^{2}}{1+t^{2}}+e^{t \cdot t^{2}} t \cdot 2 t\right) d t=\int_{0}^{1}\left(\frac{t^{2}}{1+t^{2}}+2 e^{t^{3}} t^{2}\right) d t \\
& =\int_{0}^{1}\left(1-\frac{1}{1+t^{2}}+\frac{2}{3} e^{t^{3}} 3 t^{2}\right) d t=\left.\left(t-\arctan t+\frac{2}{3} e^{t^{3}}\right)\right|_{0} ^{1} \\
& =1-\underbrace{\arctan 1}_{\frac{\pi}{4}}+\frac{2}{3} e-0-\underbrace{\arctan 0}_{0}-\frac{2}{3} \underbrace{e^{0}}_{1}=1-\frac{\pi}{4}+\frac{2}{3} e-\frac{2}{3}=\frac{4+8 e-3 \pi}{12}
\end{aligned}
$$

Q-2) Evaluate the line integral

$$
\int_{C} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+\frac{1}{z} d z
$$

where C is the curve of intersection of the surfaces $(8-\pi) x+2 y-4 z=0$ and $16 z=\left(32-\pi^{2}\right) x^{2}+4 y^{2}$ from the point $A(0,2,1)$ to the point $B(1, \pi / 2,2)$.

Solution. Call the given line integral I. So

$$
I=\int_{C} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+\frac{1}{z} d z
$$

Let

$$
M=2 \cos y, \quad N=\frac{1}{y}-2 x \sin y, \quad P=\frac{1}{z} .
$$

Then $I=\int_{C} M d x+N d y+P d z$. First we show that the differential form $M d x+N d y+P d z$ is exact.

$$
\begin{array}{cc}
\frac{\partial M}{\partial y}=-2 \sin y & , \quad \frac{\partial N}{\partial x}=-2 \sin y \text { are equal, } \\
\frac{\partial M}{\partial z}=0 & , \quad \frac{\partial P}{\partial x}=0 \text { are equal, } \\
\frac{\partial N}{\partial z}=0 & , \quad \frac{\partial P}{\partial y}=0 \text { are equal. }
\end{array}
$$

So the differential form is exact, thus there is a scalar function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial f}{\partial x}=M=2 \cos y, \frac{\partial f}{\partial y}=N=\frac{1}{y}-2 x \sin y, \frac{\partial f}{\partial z}=P=\frac{1}{z} .
$$

Integrating the first equation with respect to x we get

$$
f(x, y, z)=2 x \cos y+g(y, z)
$$

Then

$$
\frac{\partial f}{\partial x}=N \Rightarrow-2 x \sin y+\frac{\partial g}{\partial y}=\frac{1}{y}-2 x \sin y \Rightarrow \frac{\partial g}{\partial y}=\frac{1}{y} .
$$

Integrating with respect to y we get $g(y, z)=\ln |y|+h(z)$. So $f(x, y, z)=2 x \cos y+\ln |y|+h(z)$ and

$$
\frac{\partial f}{\partial z}=P \Rightarrow h^{\prime}(z)=\frac{1}{z} \Rightarrow h(z)=\ln |z|+C .
$$

So

$$
f(x, y, z)=2 x \cos y+\ln |y|+\ln |z|+C .
$$

So we have that

$$
\begin{aligned}
I & =f(1, \pi / 2,2)-f(0,2,1) \\
& =(2 \underbrace{\cos (\pi / 2)}_{0}+\ln |\pi / 2|+\ln |2|+C)-(0+\ln |2|+\underbrace{\ln |1|}_{0}+C)=\ln (\pi / 2)
\end{aligned}
$$

Q-3-A) Let $\overrightarrow{\mathbf{F}}(x, y, z)=M(x, y, z) \overrightarrow{\mathbf{i}}+N(x, y, z) \overrightarrow{\mathbf{j}}+P(x, y, z) \overrightarrow{\mathbf{k}}$ be a vector field such that M, N and P have continuous second order partial derivatives. Show that $\operatorname{div}(\operatorname{curl} \overrightarrow{\mathbf{F}})=0$.

Solution.

$$
\operatorname{curl} \overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right|=\overrightarrow{\mathbf{i}}\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right)-\overrightarrow{\mathbf{j}}\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right)+\overrightarrow{\mathbf{k}}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) .
$$

Then

$$
\begin{aligned}
\operatorname{div}(\operatorname{curl} \overrightarrow{\mathbf{F}}) & =\nabla \cdot(\operatorname{curl} \overrightarrow{\mathbf{F}}) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right)+\frac{\partial}{\partial y}\left(-\left(\frac{\partial P}{\partial x}-\frac{\partial M}{\partial z}\right)\right)+\frac{\partial}{\partial z}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{\partial^{2} P}{\partial x \partial y}-\frac{\partial^{2} N}{\partial x \partial z}-\frac{\partial^{2} P}{\partial y \partial x}+\frac{\partial^{2} M}{\partial y \partial z}+\frac{\partial^{2} N}{\partial z \partial x}-\frac{\partial^{2} M}{\partial z \partial y}=0
\end{aligned}
$$

by the equality of the mixed partial derivatives.
Q-3-B) Is there a vector field $\overrightarrow{\mathbf{G}}$ such that

$$
\operatorname{curl} \overrightarrow{\mathbf{G}}=5 x \overrightarrow{\mathbf{i}}+7 y \overrightarrow{\mathbf{j}}-2 z \overrightarrow{\mathbf{k}} ?
$$

If there is, find $\overrightarrow{\mathbf{G}}$. If there is no such $\overrightarrow{\mathbf{G}}$, explain why.
Solution. If there is such a $\overrightarrow{\mathbf{G}}$ then by part A) we have that

$$
\operatorname{div}(\operatorname{curl} \overrightarrow{\mathbf{G}})=\operatorname{div}(\operatorname{curl}(5 x \overrightarrow{\mathbf{i}}+7 y \overrightarrow{\mathbf{j}}-2 z \overrightarrow{\mathbf{k}}))=0
$$

that is $5+7-2=0$. Since this is not true, there is no such $\overrightarrow{\mathbf{G}}$.
Q-4) By using the Stokes' theorem, evaluate

$$
\int_{C}(y-z) d x+(z-x) d y+(x-y) d z
$$

where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $\frac{x}{3}+\frac{z}{4}=1$ traversed in the counterclockwise sense when viewed from high above the $x y$-plane.

Solution. Call the given line integral I, so

$$
I=\int_{C}(y-z) d x+(z-x) d y+(x-y) d z
$$

Let $\overrightarrow{\mathbf{F}}=(y-z) \overrightarrow{\mathbf{i}}+(z-x) \overrightarrow{\mathbf{j}}+(x-y) \overrightarrow{\mathbf{k}}$. Then $I=\oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s$ and by Stokes' theorem $I=\iint_{S} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{n}} d \sigma$, where

$$
S: \underbrace{\frac{x}{3}+\frac{z}{4}-1}_{f(x, y, z)}=0, \quad \overrightarrow{\mathbf{n}}=\mp \frac{\nabla f}{|\nabla f|}=\mp \frac{\frac{1}{3} \overrightarrow{\mathbf{i}}+\frac{1}{4} \overrightarrow{\mathbf{k}}}{\sqrt{\frac{1}{9}+\frac{1}{16}}}=\mp\left(\frac{4}{5} \overrightarrow{\mathbf{i}}+\frac{3}{5} \overrightarrow{\mathbf{k}}\right) .
$$

Since $\overrightarrow{\mathbf{n}}$ has positive third component we have that

$$
\overrightarrow{\mathbf{n}}=\frac{4}{5} \overrightarrow{\mathbf{i}}+\frac{3}{5} \overrightarrow{\mathbf{k}}
$$

Also
$\operatorname{curl} \overrightarrow{\mathbf{F}}=\nabla \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y-z & z-x & x-y\end{array}\right|=\overrightarrow{\mathbf{i}}(-1-1)-\overrightarrow{\mathbf{j}}(1+1)+\overrightarrow{\mathbf{k}}(-1-1)=-2 \overrightarrow{\mathbf{i}}-2 \overrightarrow{\mathbf{j}}-2 \overrightarrow{\mathbf{k}}$.
So $I=\iint_{S}\left(-\frac{8}{5}-\frac{6}{5}\right) d \sigma=-\frac{14}{5} \iint_{S} d \sigma$. Taking the $x y$-plane as the ground plane we have $\overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{k}}$. Also the projection of S on the ground plane is the disk $R: x^{2}+y^{2} \leq 1$. Then

$$
\begin{aligned}
I & =-\frac{14}{5} \iint_{S} d \sigma=-\frac{14}{5} \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \overrightarrow{\mathbf{p}}|} d A=-\frac{14}{5} \iint_{R} \frac{\left|\frac{1}{3} \mathbf{\vec { \mathbf { i } }}+\frac{1}{4} \overrightarrow{\mathbf{k}}\right|}{\left|\frac{1}{4}\right|} d x d y \\
& =-\frac{14}{5} \iint_{R} \frac{\sqrt{\frac{1}{9}+\frac{1}{16}}}{\frac{1}{4}} d x d y=-\frac{14}{3} \operatorname{Area}(R)=-\frac{14}{3} \pi
\end{aligned}
$$

