## MATH 114 <br> HOMEWORK 2 - Solutions

For this homework set $\mathbf{p}_{\mathbf{1}}=(1,2,3), \mathbf{p}_{\mathbf{2}}=(3,2,1), \mathbf{p}_{\mathbf{3}}=(4,7,5), \mathbf{p}_{4}=(3,1,-2)$.
In particular let $\mathbf{p}=p_{2}-p_{1}=(2,0,-2), \mathbf{q}=p_{3}-p_{1}=(3,5,2)$ and $\mathbf{r}=p_{4}-p_{1}=(2,-1,-5)$.

Page numberings below refer to the Alternate Edition of Thomas' Calculus.

1. $\mathbf{a}$ Find an equation for the plane passing through the points $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}$ and $\mathbf{p}_{\mathbf{3}}$.
$\mathbf{p} \times \mathbf{q}=(10,-10,10)=10(1,-1,1)$, and $\mathbf{s}=(1,-1,1)$ is a direction orthogonal to this plane. $\mathbf{s} \cdot \mathbf{p}=2$, so $x-y+z=2$ is an equation for this plane.
(see p824.)
1.b Find the area of the triangle formed by the points $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}$, and $\mathbf{p}_{\mathbf{3}}$.

This area is $\frac{1}{2}|\mathbf{p} \times \mathbf{q}|=\frac{1}{2}|(10,-10,10)|=\sqrt{3} 5$.
(see p816.)
1.c Find the volume of the parallelepiped formed by the points $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}$ and $\mathbf{p}_{\mathbf{4}}$. Is $\mathbf{p}_{\mathbf{1}}$ in the plane formed by the points $\mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}$ and $\mathbf{p}_{4}$ ?

This volume is $|\mathbf{r} \cdot(\mathbf{p} \times \mathbf{q})|=20$. If the given points were in the same plane then this parallelepiped would have zero volume. So they are not in the same plane.
(see p819.)
2. a Find the distance from the point $\mathbf{p}_{\mathbf{3}}$ to the line passing through the points $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$. This distance is $\frac{|\mathbf{p} \times \mathbf{q}|}{|\mathbf{p}|}=\frac{5 \sqrt{3}}{\sqrt{2}}$. (see p823.)
2.b Find the distance from the point $\mathbf{p}_{4}$ to the plane passing through the points $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}$ and $\mathbf{p}_{3}$.

This distance is $\frac{|\mathbf{r} \cdot(\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|}=\frac{2}{\sqrt{3}}$.
(see p825.)
(see also the exercises on p852 for alternate formulas for distances.)

