MATH 114 HOMEWORK 2 – Solutions

For this homework set $\mathbf{p_1} = (1, 2, 3), \mathbf{p_2} = (3, 2, 1), \mathbf{p_3} = (4, 7, 5), \mathbf{p_4} = (3, 1, -2).$

In particular let $\mathbf{p} = p_2 - p_1 = (2, 0, -2)$, $\mathbf{q} = p_3 - p_1 = (3, 5, 2)$ and $\mathbf{r} = p_4 - p_1 = (2, -1, -5)$.

Page numberings below refer to the Alternate Edition of Thomas' Calculus.

1.a Find an equation for the plane passing through the points $\mathbf{p_1}$, $\mathbf{p_2}$ and $\mathbf{p_3}$.

 $\mathbf{p} \times \mathbf{q} = (10, -10, 10) = 10(1, -1, 1)$, and $\mathbf{s} = (1, -1, 1)$ is a direction orthogonal to this plane. $\mathbf{s} \cdot \mathbf{p} = 2$, so x - y + z = 2 is an equation for this plane.

(see p824.)

1.b Find the area of the triangle formed by the points \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 .

This area is
$$\frac{1}{2}|\mathbf{p} \times \mathbf{q}| = \frac{1}{2}|(10, -10, 10)| = \sqrt{3} 5.$$

(see p816.)

1.c Find the volume of the parallelepiped formed by the points $\mathbf{p_1}$, $\mathbf{p_2}$, $\mathbf{p_3}$ and $\mathbf{p_4}$. Is $\mathbf{p_1}$ in the plane formed by the points $\mathbf{p_2}$, $\mathbf{p_3}$ and $\mathbf{p_4}$?

This volume is $|\mathbf{r} \cdot (\mathbf{p} \times \mathbf{q})| = 20$. If the given points were in the same plane then this parallelepiped would have zero volume. So they are not in the same plane.

(see p819.)

 $\mathbf{2.a}$ Find the distance from the point $\mathbf{p_3}$ to the line passing through the points $\mathbf{p_1}$ and $\mathbf{p_2}.$

This distance is $\frac{|\mathbf{p} \times \mathbf{q}|}{|\mathbf{p}|} = \frac{5\sqrt{3}}{\sqrt{2}}.$

(see p823.)

 ${\bf 2.b}$ Find the distance from the point ${\bf p_4}$ to the plane passing through the points ${\bf p_1},\,{\bf p_2}$ and ${\bf p_3}.$

This distance is $\frac{|\mathbf{r} \cdot (\mathbf{p} \times \mathbf{q})|}{|\mathbf{p} \times \mathbf{q}|} = \frac{2}{\sqrt{3}}.$

(see p825.)

(see also the exercises on p852 for alternate formulas for distances.)