MATH 114 HOMEWORK 4 SOLUTIONS

1.pg.976-24: Find local extrema.
$f(x+y)=2 x^{3}+2 y^{3}-9 x^{2}+3 y^{2}-12 y$. Hence, $f_{x}=6 x^{2}-18 x=0, f_{y}=$ $6 y^{2}+6 y-12=0$.

Then, $x=0, x=3$ and $y=-2, y=1$. We will look at Δ to find local max,local min and saddle points. As $\Delta=f_{x x} f_{y y}-f_{x y}^{2}$ and

$$
f_{x x}=12 x-18, f_{y y}=12 y+6 \text { and } f_{x y}=0
$$

we have, $\Delta<0$ at the points $(3,-2)$ and $(0,1)$. So these are the saddle points.

We have $\Delta>0$ at the points $(3,1)$ and $(0,-2)$. As $f_{x x}>0$ at $(3,1)$ it is local minimum and as $f_{x x}<0$ at $(0,-2)$ it is local maximum.
2. pg.1010-34: Integrate:

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{4-x^{2}}\left(\frac{x e^{2 y}}{4-y}\right) d y d x & =\int_{0}^{4} \int_{0}^{\sqrt{4-y}}\left(\frac{x e^{2 y}}{4-y}\right) d x d y \\
& =\left.\int_{0}^{4}\left(\frac{x^{2} e^{2 y}}{2(4-y)}\right)\right|_{0} ^{\sqrt{4-y}} d y \\
& =\frac{e^{8}-1}{4}
\end{aligned}
$$

3. pg.1010-15: Integrate $f(u, v)=v-\sqrt{u}$ over the triangular region cut from the first quadrant of the $u v$-plane by the line $u+v=1$.

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-u}(v-\sqrt{u}) d v d u & =\left.\int_{0}^{1}\left(\frac{v^{2}}{2}-\sqrt{u} v\right)\right|_{0} ^{1-u} d u \\
& =\frac{-1}{10}
\end{aligned}
$$

Equivalently,

$$
\int_{0}^{1} \int_{0}^{1-v}(v-\sqrt{u}) d u d v=\frac{-1}{10}
$$

4. pg.976-38: Find absolute extrema on the triangular plate bounded by the lines $x=0, y=0$ and $x+y=1$ in the first quadrant. $f(x, y)=4 x-8 x y+2 y+1$. Hence, $f_{x}=4-8 y, f_{y}=2-8 x$,
i. on $y=0$: We have $f(x, y)=f(x, 0)=4 x+1,0 \leq x \leq 1$. The possible extreme values at the endpoints are

$$
f(0,0)=1 \text { and } f(1,0)=5
$$

The interior ones must satisfy $f^{\prime}(x, 0)=0$ but we have $f^{\prime}(x, 0)=4>0$. So we do not have an extreme value in the interior.
ii. on $x=0$: We have $f(x, y)=f(0, y)=2 y+1,0 \leq y \leq 1$. The possible extreme values at the endpoints are

$$
f(0,0)=1 \text { and } f(1,0)=3
$$

The interior ones must satisfy $f^{\prime}(0, y)=0$ but we have $f^{\prime}(0, y)=2>0$. So we do not have an extreme value in the interior.
iii. on $x+y=1$: We have $f(x, y)=f(x, 1-x)=8 x^{2}-6 x+3$. Hence, $f^{\prime}(x, 1-x)=0$ gives $x=3 / 8$. So, $y=5 / 8$ and the possible extreme value is $f(x, y)=f(3 / 8,5 / 8)=15 / 8$.
iv. We should also look at the points satisfying $f_{x}=f_{y}=0$. In our case this is the point $(1 / 4,1 / 2)$ and it gives us the value 2 .

Hence we have the values $1,2,3,5,15 / 8$. Clear that, the maximum is 5 attained at $(0,1)$ and the minimum is 1 attained at $(0,0)$.
4. pg.987-16: Design a container in the shape of a cylindrical tank with hemispherical ends. Its volume must be $8000 \mathrm{~m}^{3}$. What should the dimensions be so that the least amount of surface material will be needed?
$V=\frac{4}{3} \pi r^{3}+\pi r^{2} h=8000$. So let, $f(r, h)=\frac{4}{3} \pi r^{3}+\pi r^{2} h-8000$ and $g(r, h)=f_{r}=4 \pi r^{2}+2 \pi r h$. Then, by $\nabla f=\lambda \nabla g$ we get

$$
(8 \pi r+2 \pi h) \hat{\imath}+(2 \pi r) \hat{\jmath}=\lambda\left[\left(4 \pi r^{2}+2 \pi r h\right) \hat{\imath}+\left(\pi r^{2}\right) \hat{\jmath}\right] .
$$

So, $r=\frac{2}{\lambda}$, where λ is nonzero. In fact if $\lambda=0$ then $V=0$ will hold which is nonsense. So we have $r=\frac{2}{\lambda}$, implying $h=0$. Substituting in f we get, $r=10 \sqrt[3]{\frac{6}{\pi}}$.

Thanks to Yasemin Şengül for the solutions.

