MATH 114 Homework 1

Turn in by February 22, 2005 until 10:30.

1. Evaluate the following improper integral:

$$
\int_{0}^{+\infty} x^{2} e^{-x} d x
$$

2. For a certain value of the constant C the following improper integral converges. Determine C and evaluate the integral.

$$
\int_{2}^{+\infty}\left(\frac{C x}{x^{2}+1}-\frac{1}{2 x+1}\right) d x
$$

3. a) Find the function $f(x)$ such that

$$
f(x)=\sum_{n=1}^{+\infty} n^{2} x^{n}=x+2^{2} x^{2}+3^{2} x^{3}+4^{2} x^{4}+\cdots,-1<x<1
$$

b) Find the following sum:

$$
-\frac{1}{2}+\frac{2^{2}}{2^{2}}-\frac{3^{2}}{2^{3}}+\frac{4^{2}}{2^{4}}-\frac{5^{2}}{2^{5}}+\cdots
$$

4. Use the identity $\cos ^{2} x=(1+\cos 2 x) / 2$ to obtain the Maclaurin series for $\cos ^{2} x$. Then differentiate this series to obtain the Maclaurin series for $-2 \sin x \cos x$. Check that this is the series for $-\sin 2 x$.
