MATH 114 Homework 3

Turn in by March 22, 2005 until 10:40.

1. Let

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

By using $\varepsilon-\delta$ definition of limit, show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$.
2. Find $\lim _{(x, y) \rightarrow(0,0)} \arctan \left(\frac{x-y}{x^{2}+y^{2}}\right)$ or show that the limit doesn't exist.
3. For the following functions verify that $\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}$.
a) $f(x, y)=x y^{2}+x^{2} y^{3}+x^{3} y^{4}$
b) $f(x, y)=x^{y}, x>0$.
4. Let $f(u, v)$ be a differentiable function such that

$$
\frac{\partial f}{\partial u}(2,3)=-1, \quad \frac{\partial f}{\partial u}(12,1)=-3, \quad \frac{\partial f}{\partial v}(2,3)=4, \quad \frac{\partial f}{\partial v}(12,1)=2 .
$$

Let $z=f\left(x^{2} y, x^{2}-y\right)$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point $(x, y)=(2,3)$.

