Date: 22 May 2006, Monday
Instructor: Ali Sinan Sertöz
Time: 9:00-11:00

Math 114 Calculus - Final Exam - Solutions

Q-1) Consider the power series $\sum_{n=2}^{\infty} \frac{2^{n}(x-1)^{n}}{n \ln n}$.
(i): Find its radius of convergence. (6 points)
(ii): Check convergence at the end points. (7 points each)

Solution: Applying the ratio test $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=2|x-1|<1$ for convergence gives the radius of convergence as $1 / 2$.

When $x=1 / 2$, the series converges by alternating series test.
When $x=3 / 2$, the series diverges by integral test.

Q-2) Find all local/global min/max and saddle points, if any, of the function

$$
f(x, y)=4 x^{2}-6 x y+5 y^{2}-20 x+26 y .
$$

Justify your answers.
Solution: $f_{x}=8 x-6 y-20=0$ and $f_{y}=-6 x+10 y+26=0$ gives $p_{0}=(1,-2)$ as the only critical point. Since f must be bounded below, we can immediately conclude at this stage that this is the global minimum. Applying the second derivative test with $f_{x x}=8, f_{x y}=-6$ and $f_{y y}=10$ gives $\Delta>0$, also indicating a minimum.

Q-3) The plane $x+y+z=1$ cuts the cylinder $x^{2}+y^{2}=1$ in an ellipse. Find the point on this ellipse closest to the origin.

Solution: This is a solved example in the book, page 1046. You apply Lagrange multiplier method to the function $x^{2}+y^{2}+z^{2}$ with the constraints $x+y+z=1$ and $x^{2}+y^{2}=1$, to get both $(1,0,0)$ and $(0,1,0)$ as the points on the ellipse closest to the origin.

Q-4) Evaluate $\int_{0}^{2} \int_{y}^{2} x^{2} \sin (x y) d x d y$.

Solution:

$\int_{0}^{2} \int_{y}^{2} x^{2} \sin (x y) d x d y=\int_{0}^{2} \int_{0}^{x} x^{2} \sin (x y) d y d x=-\int_{0}^{2} x\left(\left.\cos (x y)\right|_{0} ^{x}\right) d x$
$=-\int_{0}^{x}\left(x \cos \left(x^{2}\right)-x\right) d x=\left(-\frac{1}{2} \sin x^{2}+\left.\frac{1}{2} x^{2}\right|_{0} ^{2}\right)=-\frac{1}{2} \sin 4+2$.

Q-5) Let C be the circle of intersection of the plane $x-2 y+3 z=0$ with the sphere $x^{2}+y^{2}+z^{2}=13$, oriented counterclockwise when viewed from the north pole of the sphere.
Calculate $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}=(x+y) \mathbf{i}+(3 x-z) \mathbf{j}+(5 y-7 x) \mathbf{k}$ and \mathbf{T} is the unit tangent vector of C with the given orientation.

Solution: Let D be the disc bounded by C with its unit normal vector $\mathbf{n}=(1,-2,3) /|(1,-2,3)|$. The area of D is 13π. The Stokes' theorem gives

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s & =\iint_{D} \operatorname{curlF} \cdot \mathbf{n} d \sigma \\
& =\frac{1}{\sqrt{14}} \iint_{D}(6,7,2) \cdot(1,-2,3) d \sigma \\
& =\frac{-2}{\sqrt{14}} \iint_{D} d \sigma \\
& =\frac{-2}{\sqrt{14}} 13 \pi=\frac{-26 \pi}{\sqrt{14}} .
\end{aligned}
$$

