MATH 114 Homework 2

Find the limits of the following sequences, if they converge.

1. $a_{n}=\frac{n!}{n^{n}}$.

Solution:

$$
a_{n}=\frac{n!}{n^{n}}=\frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n} \leq \frac{1}{n}
$$

since each $\frac{k}{n} \leq 1$ for $k=2, \ldots, n$. Hence $\lim _{n \rightarrow \infty} a_{n}=0$ by the sandwich theorem.
2. $a_{n}=\frac{n!}{10^{6 n}}$.

Solution: Let $N=10^{6}$ and $K=\frac{N!}{N^{N}}$. For $n>N$, we note that each $\frac{n}{N}>1$ and

$$
a_{n}=K \cdot\left(\frac{N+1}{N} \cdots \frac{n-1}{N}\right) \cdot \frac{n}{N}>\frac{K}{N} n .
$$

Hence $\lim _{n \rightarrow \infty} a_{n}=\infty$.
3. $a_{n}=\left(\frac{1}{n}\right)^{1 / \ln n}$.

Solution: $\ln a_{n}=-1$, so $a_{n}=1 / e$ for all n, giving us the trivial limit $1 / e$.
4. $\quad a_{n}=\frac{n^{2}}{3 n-1} \sin \frac{1}{n}$.

Solution: $\quad a_{n}=\frac{n}{3 n-1} \cdot \frac{\sin (1 / n)}{(1 / n)} \rightarrow \frac{1}{3}$ as $n \rightarrow \infty$.
5. $a_{n}=\frac{(\ln n)^{2006}}{n}$.

Solution: After one application of L'Hopital, we find

$$
\lim _{n \rightarrow \infty} \frac{(\ln n)^{2006}}{n}=\lim _{n \rightarrow \infty} \frac{2006(\ln n)^{2005}}{n}
$$

Clearly, after 2006 applications we will have

$$
\lim _{n \rightarrow \infty} \frac{(\ln n)^{2006}}{n}=\cdots=\lim _{n \rightarrow \infty} \frac{2006!}{n}=0 .
$$

