MATH 114 Homework 3 – Solutions

1: Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^2 \sin(1/n)}{3n-1} x^n$.

Solution:

Let $a_n(x) = \frac{n^2 \sin(1/n)}{3n-1} x^n$. Use the ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x)}{a_n(x)} \right| = \lim_{n \to \infty} \left| \left(\frac{n+1}{n} \right)^2 \cdot \frac{3n-1}{3n+1} \right| \ |x| = |x|.$$

The series converges absolutely for |x| < 1. We now check the end points:

 $\lim_{n \to \infty} |a_n(\pm 1)| = \lim_{n \to \infty} \frac{n}{3n - 1} \cdot \left| \frac{\sin 1/n}{1/n} \right| = \frac{1}{3}$, so the series diverges at the end points by the divergence test. The interval of convergence is (-1, 1).

2: Find the interval of convergence of the power series $f(x) = \sum_{n=1}^{\infty} n^2 x^n$. Do not forget to check the end points. Show that f(x) is a rational function of x.

Solution:

Let $a_n(x) = n^2 x^n$. Use the ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x)}{a_n(x)} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} |x| = |x|$$

The series converges absolutely for |x| < 1. We now check the end points:

 $a_n(\pm 1)| = n^2$, so $\lim_{n \to \infty} a_n(\pm 1) \neq 0$ and the series diverges at the end points by the divergence test. The interval of convergence is (-1, 1).

Observe that
$$f(x) = x \cdot \left(x \cdot \left(\frac{1}{1-x}\right)'\right)' = \frac{x(1+x)}{(1-x)^3}$$
.

3: Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$. Do not forget to check the end points.

Solution:

Let $a_n(x) = \frac{n!}{n^n} x^n$. Use the ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x)}{a_n(x)} \right| = \lim_{n \to \infty} \frac{|x|}{(1+1/n)^n} = \frac{|x|}{e}.$$

The series converges absolutely for |x| < e. We now check the end points:

We first claim that
$$\left(1+\frac{1}{n}\right)^n < e \text{ for } n \ge 1.$$

Let $f(x) = \left(1+\frac{1}{x}\right)^x$ for $x \ge 1.$
 $f'(x) = \left(1+\frac{1}{x}\right)^x \left[\ln\left(1+\frac{1}{x}\right) - \frac{1}{1+x}\right].$

We claim that f'(x) > 0 for $x \ge 1$.

Let
$$g(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}$$
 for $x \ge 1$. Then $g'(x) = -\frac{1}{x(1+x)^2} < 0$ for $x \ge 1$.

We now observe that $g(1) = \ln 2 - \frac{1}{2} = 0.1931... > 0$ and $\lim_{x \to \infty} g(x) = 0$.

Therefore g(x) > 0 for $x \ge 1$.

Also observe that f(1) = 2, $\lim_{x \to \infty} f(x) = e$ and $f'(x) = \left(1 + \frac{1}{x}\right)^x g(x) > 0$ for $x \ge 1$. Therefore we have $2 < \left(1 + \frac{1}{x}\right)^x < e$ for $x \ge 1$.

Now we put these together to check convergence at the end points:

 $\left|\frac{a_{n+1}(\pm e)}{a_n(\pm e)}\right| = \frac{e}{\left(1+\frac{1}{n}\right)^n} > 1 \text{ so } |a_n(\pm e)| > |a_n(\pm e)| \text{ for } n \ge 1. \text{ This clearly implies that}$ $\lim_{n \to \infty} a_n(\pm e) \neq 0 \text{ so the series diverges at the end points by the divergence test.}$

The interval of convergence is (-e, e).

4: Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!}{2^n} x^n$. Do not forget to check the end points.

Solution:

Let $a_n(x) = \frac{n!}{2^n} x^n$. Use the ratio test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x)}{a_n(x)} \right| = \lim_{n \to \infty} \frac{n+1}{2} |x| = \begin{cases} 0 & \text{if } x = 0, \\ \infty & \text{if } x \neq 0. \end{cases}$$

The series converges converges only when x = 0.

5: Assume that $f(x) = \sum_{n=0}^{\infty} c_n x^n$ converges for all $x \in (-c, c)$ for some c > 0. Show that when f is an odd function, then $c_{2n} = 0$ for all n. Also show that when f is even, then $c_{2n+1} = 0$ for all n.

Solution:

Assume f is odd: f(x) + f(-x) = 0.

$$0 = \sum_{n=0}^{\infty} \left[1 + (-1)^n \right] c_n x^n = 2 \sum_{n=0}^{\infty} c_{2n} x^{2n}, \text{ so } c_{2n} = 0 \text{ for all } n.$$

Similarly assume f is even: f(x) - f(-x) = 0.

$$0 = \sum_{n=0}^{\infty} \left[1 - (-1)^n\right] c_n x^n = 2 \sum_{n=0}^{\infty} c_{2n+1} x^{2n+1}, \text{ so } c_{2n+1} = 0 \text{ for all } n.$$

Comments to sertoz@bilkent.edu.tr.