MATH 114 Homework 3 - Solutions

1: Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^{2} \sin (1 / n)}{3 n-1} x^{n}$.

Solution:

Let $a_{n}(x)=\frac{n^{2} \sin (1 / n)}{3 n-1} x^{n}$. Use the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x)}{a_{n}(x)}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{n+1}{n}\right)^{2} \cdot \frac{3 n-1}{3 n+1}\right||x|=|x|$.
The series converges absolutely for $|x|<1$. We now check the end points:
$\lim _{n \rightarrow \infty}\left|a_{n}(\pm 1)\right|=\lim _{n \rightarrow \infty} \frac{n}{3 n-1} \cdot\left|\frac{\sin 1 / n}{1 / n}\right|=\frac{1}{3}$, so the series diverges at the end points by the divergence test. The interval of convergence is $(-1,1)$.

2: Find the interval of convergence of the power series $f(x)=\sum_{n=1}^{\infty} n^{2} x^{n}$.
Do not forget to check the end points. Show that $f(x)$ is a rational function of x.

Solution:

Let $a_{n}(x)=n^{2} x^{n}$. Use the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x)}{a_{n}(x)}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}|x|=|x|$.
The series converges absolutely for $|x|<1$. We now check the end points:
$a_{n}(\pm 1) \mid=n^{2}$, so $\lim _{n \rightarrow \infty} a_{n}(\pm 1) \neq 0$ and the series diverges at the end points by the divergence test. The interval of convergence is $(-1,1)$.

Observe that $f(x)=x \cdot\left(x \cdot\left(\frac{1}{1-x}\right)^{\prime}\right)^{\prime}=\frac{x(1+x)}{(1-x)^{3}}$.

3: Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} x^{n}$.
Do not forget to check the end points.

Solution:

Let $a_{n}(x)=\frac{n!}{n^{n}} x^{n}$. Use the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x)}{a_{n}(x)}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{(1+1 / n)^{n}}=\frac{|x|}{e}$.
The series converges absolutely for $|x|<e$. We now check the end points:
We first claim that $\left(1+\frac{1}{n}\right)^{n}<e$ for $n \geq 1$.
Let $f(x)=\left(1+\frac{1}{x}\right)^{x}$ for $x \geq 1$.
$f^{\prime}(x)=\left(1+\frac{1}{x}\right)^{x}\left[\ln \left(1+\frac{1}{x}\right)-\frac{1}{1+x}\right]$.
We claim that $f^{\prime}(x)>0$ for $x \geq 1$.
Let $g(x)=\ln \left(1+\frac{1}{x}\right)-\frac{1}{1+x}$ for $x \geq 1$. Then $g^{\prime}(x)=-\frac{1}{x(1+x)^{2}}<0$ for $x \geq 1$.
We now observe that $g(1)=\ln 2-\frac{1}{2}=0.1931 \ldots>0$ and $\lim _{x \rightarrow \infty} g(x)=0$.
Therefore $g(x)>0$ for $x \geq 1$.
Also observe that $f(1)=2, \lim _{x \rightarrow \infty} f(x)=e$ and $f^{\prime}(x)=\left(1+\frac{1}{x}\right)^{x} g(x)>0$ for $x \geq 1$.
Therefore we have $2<\left(1+\frac{1}{x}\right)^{x}<e$ for $x \geq 1$.
Now we put these together to check convergence at the end points:
$\left|\frac{a_{n+1}(\pm e)}{a_{n}(\pm e)}\right|=\frac{e}{\left(1+\frac{1}{n}\right)^{n}}>1$ so $\left|a_{n}(\pm e)\right|>\left|a_{n}(\pm e)\right|$ for $n \geq 1$. This clearly implies that
$\lim _{n \rightarrow \infty} a_{n}(\pm e) \neq 0$ so the series diverges at the end points by the divergence test.
The interval of convergence is $(-e, e)$.

4: Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!}{2^{n}} x^{n}$.
Do not forget to check the end points.

Solution:

Let $a_{n}(x)=\frac{n!}{2^{n}} x^{n}$. Use the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x)}{a_{n}(x)}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{2}|x|= \begin{cases}0 & \text { if } x=0, \\ \infty & \text { if } x \neq 0 .\end{cases}$
The series converges converges only when $x=0$.

5: Assume that $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges for all $x \in(-c, c)$ for some $c>0$. Show that when f is an odd function, then $c_{2 n}=0$ for all n. Also show that when f is even, then $c_{2 n+1}=0$ for all n.

Solution:

Assume f is odd: $f(x)+f(-x)=0$.
$0=\sum_{n=0}^{\infty}\left[1+(-1)^{n}\right] c_{n} x^{n}=2 \sum_{n=0}^{\infty} c_{2 n} x^{2 n}$, so $c_{2 n}=0$ for all n.
Similarly assume f is even: $f(x)-f(-x)=0$.
$0=\sum_{n=0}^{\infty}\left[1-(-1)^{n}\right] c_{n} x^{n}=2 \sum_{n=0}^{\infty} c_{2 n+1} x^{2 n+1}$, so $c_{2 n+1}=0$ for all n.

Comments to sertoz@bilkent.edu.tr.

