Due on March 13, 2006, Monday, Class time. No late submissions!

MATH 114 Homework 4 - Solutions

1: Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{5}}{x^{2}+y^{4}}$, if it exists.
Solution: $\quad 0 \leq\left|\frac{x y^{5}}{x^{2}+y^{4}}\right|=|x y| \frac{y^{4}}{x^{2}+y^{4}} \leq|x y| \frac{x^{2}+y^{4}}{x^{2}+y^{4}}=|x y| \rightarrow 0$ as $(x, y) \rightarrow(0,0)$.
Hence the required limit is zero by the sandwich theorem.

2: Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$, if it exists.
Solution: Let $y=\lambda x$. Then $\frac{x y}{x^{2}+y^{2}}=\frac{\lambda}{1+\lambda^{2}}$, so the limit does not exist.

3: Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+3 y^{4}}$, if it exists.
Solution: Let $x=t^{2}$ and $y=\lambda t$. Then $\frac{x y^{2}}{x^{2}+3 y^{4}}=\frac{\lambda^{2} t^{4}}{t^{4}+3 \lambda^{4} t^{4}}=\frac{\lambda^{2}}{1+3 \lambda^{4}}$ which depends on λ, i.e. the limit depends on the line of approach. Hence the limit does not exist.

4: Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{5}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}$, if it exists.
Solution: Putting $x=r \cos \theta$ and $y=\sin \theta$ we find that the function becomes $r\left(\cos ^{5} \theta-\sin ^{5} \theta\right)$ and the limit as $r \rightarrow 0$ is zero:

5: Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{8}}{x^{4}+y^{6}}$, if it exists.
Solution: $0 \leq \frac{x^{2} y^{8}}{x^{4}+y^{6}}<\frac{x^{2} y^{6}}{x^{4}+y^{6}} \leq \frac{x^{2}\left(x^{4}+y^{6}\right)}{x^{4}+y^{6}}=x^{2}$ when $0<y<1$. Then by the sandwich theorem the limit is zero.

