Due on March 20, 2006, Monday.

MATH 114 Homework 5 - Solutions

1: Let $f(x, y)=\sin \ln \left(x^{2}+y^{2}\right)$ where $x=\cos \theta$ and $y=4 \sin \theta$. Find $\left.\frac{\partial f}{\partial \theta}\right|_{\theta=\pi / 4}$.
Solution:

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
& =\left[\cos \left(\ln \left(x^{2}+y^{2}\right)\right) \frac{2 x}{x^{2}+y^{2}}\right][-\sin \theta]+\left[\cos \left(\ln \left(x^{2}+y^{2}\right)\right) \frac{2 y}{x^{2}+y^{2}}\right][4 \cos \theta] \\
\left.\frac{\partial f}{\partial \theta}\right|_{\theta=\pi / 4} & =\left[\cos \left(\ln \frac{17}{2}\right) \frac{4}{17 \sqrt{2}}\right]\left[-\frac{1}{\sqrt{2}}\right]+\left[\cos \left(\ln \frac{17}{2}\right) \frac{16}{17 \sqrt{2}}\right]\left[\frac{4}{\sqrt{2}}\right] \\
& =\cos \left(\ln \frac{17}{2}\right) \frac{30}{17} \approx-0.95
\end{aligned}
$$

2: Let $x^{2}-x y+y z^{3}+x^{2} z^{2}-2 x y^{3}=0$ define z as a function of x and y. Find the equation of the tangent plane to this surface at the point $(1,1,1)$.

Solution: Take implicit derivative of this equation with respect to x and y separately to obtain

$$
\begin{array}{r}
2 x-y+3 y z^{2} z_{x}+2 x^{2} z z_{x}+2 x z^{2}-2 y^{3}=0 \\
-x+3 y z^{2} z_{y}+z^{3}+2 x^{2} z z_{y}-6 x y^{2}=0
\end{array}
$$

from which we find that at the point $(1,1,1)$ we should have $z_{x}=-\frac{1}{5}$ and $z_{y}=\frac{6}{5}$. The equation of the tangent plane at that point is

$$
z=1-\frac{1}{5}(x-1)+\frac{6}{5}(y-1)=-\frac{1}{5} x+\frac{6}{5} y .
$$

3: Consider the equations $w=x^{4}+3 x^{2} y+x y^{2}+y^{3}, x=s^{2}+t^{2}, y=\cos \left(\frac{5 \pi}{t^{2}+1}\right), s=u+2 v$ and $t=3 u+4 v$. Find $\left.\frac{\partial w}{\partial u}\right|_{(u, v)=(1,0)}$.

Solution: We first prepare a table of values:

function	value at $(u, v)=(1,0)$
$s=u+2 v$	1
$t=3 u+4 v$	3
$x=s^{2}+t^{2}$	10
$y=\cos \left(\frac{5 \pi}{t^{2}+1}\right)$	0
$w_{x}=4 x^{3}+6 x y+x y^{2}+y^{2}$	4000
$w_{y}=3 x^{2}+2 x y+3 y^{2}$	300
$x_{s}=2 s$	2
$x_{t}=2 t$	6
$y_{s}=0$	0
$y_{t}=-\sin \left(\frac{5 \pi}{t^{2}+1}\right) \frac{-10 t \pi}{\left(t^{2}+1\right)^{2}}$	$\frac{3 \pi}{10}$
$s_{u}=1$	1
$t_{u}=3$	3

Putting these together in $w_{u}=w_{x}\left(x_{s} s_{u}+x_{t} t_{u}\right)+w_{y}\left(y_{s} s_{u}+y_{t} t_{u}\right)$ we obtain $w_{u}=80000+270 \pi \approx 80848.23$.

4: Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{3}+4 z^{4}$ at the point $(1,2,3)$ in the direction of $(4,5,6)$.

Solution:

$\nabla f=\left(4 x, 9 y^{2}, 16 z^{3}\right), \nabla f(1,2,3)=(4,36,432)$.
$|(4,5,6)|=\sqrt{77}, \vec{u}=(4 / \sqrt{77}, 5 / \sqrt{77}, 6 / \sqrt{77})$.
$D_{\vec{u}} f(1,2,3)=\nabla f(1,2,3) \cdot \vec{u}=\frac{2788}{\sqrt{77}} \approx 317.7$.

5: Assume that $f(x, y)=0$ defines a plane curve. Show that the gradient ∇f is orthogonal to the tangent line of the curve at every point where the curve is smooth.

Solution: If the curve is smooth at a point, then there is a local parametrization for the curve in the form $(x, y)=(x(t), y(t))$ for some real variable t. Then we have $f(x(t), y(t))=0$. Taking derivative with respect to t, using chain rule, we find $f_{x} \cdot x^{\prime}+$ $f_{y} \cdot y^{\prime}=\nabla f \cdot\left(x^{\prime}, y^{\prime}\right)=0$. Since $\left(x^{\prime}, y^{\prime}\right)$ is the tangent vector of the curve at that point, this shows that ∇f is orthogonal to the curve at every point where the curve is smooth.

