Due on March 20, 2006, Monday.

MATH 114 Homework 5 – Solutions

1: Let $f(x,y) = \sin \ln(x^2 + y^2)$ where $x = \cos \theta$ and $y = 4\sin \theta$. Find $\frac{\partial f}{\partial \theta}\Big|_{\theta = \pi/4}$.

Solution:

$$\begin{aligned} \frac{\partial f}{\partial \theta} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\ &= \left[\cos\left(\ln(x^2 + y^2)\right) \frac{2x}{x^2 + y^2} \right] \left[-\sin\theta \right] + \left[\cos\left(\ln(x^2 + y^2)\right) \frac{2y}{x^2 + y^2} \right] \left[4\cos\theta \right] \\ \frac{\partial f}{\partial \theta} \Big|_{\theta=\pi/4} &= \left[\cos\left(\ln\frac{17}{2}\right) \frac{4}{17\sqrt{2}} \right] \left[-\frac{1}{\sqrt{2}} \right] + \left[\cos\left(\ln\frac{17}{2}\right) \frac{16}{17\sqrt{2}} \right] \left[\frac{4}{\sqrt{2}} \right] \\ &= \cos\left(\ln\frac{17}{2}\right) \frac{30}{17} \approx -0.95 \end{aligned}$$

2: Let $x^2 - xy + yz^3 + x^2z^2 - 2xy^3 = 0$ define z as a function of x and y. Find the equation of the tangent plane to this surface at the point (1, 1, 1).

Solution: Take implicit derivative of this equation with respect to x and y separately to obtain

$$2x - y + 3yz^{2}z_{x} + 2x^{2}zz_{x} + 2xz^{2} - 2y^{3} = 0$$

$$-x + 3yz^{2}z_{y} + z^{3} + 2x^{2}zz_{y} - 6xy^{2} = 0$$

from which we find that at the point (1,1,1) we should have $z_x = -\frac{1}{5}$ and $z_y = \frac{6}{5}$. The equation of the tangent plane at that point is

$$z = 1 - \frac{1}{5}(x - 1) + \frac{6}{5}(y - 1) = -\frac{1}{5}x + \frac{6}{5}y$$

3: Consider the equations $w = x^4 + 3x^2y + xy^2 + y^3$, $x = s^2 + t^2$, $y = \cos\left(\frac{5\pi}{t^2+1}\right)$, s = u + 2vand t = 3u + 4v. Find $\frac{\partial w}{\partial u}\Big|_{(u,v)=(1,0)}$.

Solution: We first prepare a table of values:

function	value at $(u, v) = (1, 0)$
s = u + 2v	1
t = 3u + 4v	3
$x = s^2 + t^2$	10
$y = \cos\left(\frac{5\pi}{t^2 + 1}\right)$	0
$w_x = 4x^3 + 6xy + xy^2 + y^2$	4000
$w_y = 3x^2 + 2xy + 3y^2$	300
$x_s = 2s$	2
$x_t = 2t$	6
$y_s = 0$	0
$y_t = -\sin\left(\frac{5\pi}{t^2 + 1}\right) \frac{-10t\pi}{(t^2 + 1)^2}$	$\frac{3\pi}{10}$
$s_u = 1$	1
$t_u = 3$	3

Putting these together in $w_u = w_x (x_s s_u + x_t t_u) + w_y (y_s s_u + y_t t_u)$ we obtain $w_u = 80000 + 270\pi \approx 80848.23$.

4: Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^3 + 4z^4$ at the point (1, 2, 3) in the direction of (4, 5, 6).

Solution:

 $\nabla f = (4x, 9y^2, 16z^3), \ \nabla f(1, 2, 3) = (4, 36, 432).$ $|(4, 5, 6)| = \sqrt{77}, \ \vec{u} = (4/\sqrt{77}, 5/\sqrt{77}, 6/\sqrt{77}).$ $D_{\vec{u}}f(1, 2, 3) = \nabla f(1, 2, 3) \cdot \vec{u} = \frac{2788}{\sqrt{77}} \approx 317.7.$

5: Assume that f(x, y) = 0 defines a plane curve. Show that the gradient ∇f is orthogonal to the tangent line of the curve at every point where the curve is smooth.

Solution: If the curve is smooth at a point, then there is a local parametrization for the curve in the form (x, y) = (x(t), y(t)) for some real variable t. Then we have f(x(t), y(t)) = 0. Taking derivative with respect to t, using chain rule, we find $f_x \cdot x' + f_y \cdot y' = \nabla f \cdot (x', y') = 0$. Since (x', y') is the tangent vector of the curve at that point, this shows that ∇f is orthogonal to the curve at every point where the curve is smooth.