Due on March 20, 2006, Monday, Class time. No late submissions!

MATH 114 Homework 5

1: Let $f(x, y)=\sin \ln \left(x^{2}+y^{2}\right)$ where $x=\cos \theta$ and $y=4 \sin \theta$. Find $\left.\frac{\partial f}{\partial \theta}\right|_{\theta=\pi / 4}$.
2: Let $x^{2}-x y+y z^{3}+x^{2} z^{2}-2 x y^{3}=0$ define z as a function of x and y. Find the equation of the tangent plane to this surface at the point $(1,1,1)$.

3: Consider the equations $w=x^{4}+3 x^{2} y+x y^{2}+y^{3}, x=s^{2}+t^{2}, y=\cos \left(\frac{5 \pi}{t^{2}+1}\right), s=u+2 v$ and $t=3 u+4 v$. Find $\left.\frac{\partial w}{\partial u}\right|_{(u, v)=(1,0)}$.

4: Find the directional derivative of $f(x, y, z)=2 x^{2}+3 y^{3}+4 z^{4}$ at the point $(1,2,3)$ in the direction of $(4,5,6)$.

5: Assume that $f(x, y)=0$ defines a plane curve. Show that the gradient ∇f is orthogonal to the tangent line of the curve at every point where the curve is smooth.

