
Due on April 3, 2006, Monday.

MATH 114 Homework 6 – Solutions

1: Let f(x, y) = 8x3 +y3 +6xy. Find local min/max, global min/max and saddle points,
if they exist, for this function.

Solution:

fx = 24x2+6y = 0 and fy = 3y2+6x = 0 gives the critical points as (0, 0) and (−1/2,−1).

We now apply the second derivative test:

fxx = 48x, fxy = 6, fyy = 6y, so ∆(x, y) = 288xy − 36.
∆(0, 0) < 0, so (0, 0) is a saddle point.
∆(−1/2,−1) > 0, fxx(−1/2,−1) < 0, so this is a local maximum point.
f has no global min/max since f becomes ±∞ as (x, y) → (±∞, 0).

2: Let f(x, y) = xy +2x− ln(x2y) where x, y > 0. Find local min/max, global min/max
and saddle points, if they exist, for this function.

Solution:

fx = y + 2− 2

x
= 0, fy = x− 1

y
= 0 gives (1/2, 2) as the only critical point.

fxx =
2

x2
, fxy = 1, fyy =

1

y2
, ∆ =

2

x2y2
− 1.

At the critical point, fxx > 0 and ∆ > 0, so the critical point is a local minimum.

f becomes infinite as (x, y) approaches the x-axis or the y-axis, which are the boundaries
of the domain of f . Therefore the critical point (1/2, 2) gives the global minimum of f .

3: Let f(x, y) = x2 + kxy + y2 where k ∈ R. Find local min/max, global min/max and
saddle points, if they exist, for this function, for each value of k.

Solution:

fx = 2x + ky = 0, fy = kx + 2y = 0 gives y

(
2− k2

2

)
= 0.



If y = 0, then (0, 0) is the only critical point of f .

fxx = fyy = 2, fxy = k so ∆ = 4− k2.

If |k| < 2, then (0, 0) is a local minimum point, but since it is the only critical point, it
gives the global minimum.

If |k| > 2, then (0, 0) is a saddle point.

If k = 2, then f = (x + y)2 ≥ 0 and has a global minimum along the line y = −x.

If k = −2, then f = (x− y)2 ≥ 0 and has a global minimum along the line y = x.

Finally, if y 6= 0, then k = ±2 which is already examined.

4: Find the distance from the surface z = x2 +y2 +10 to the plane x+2y−z = 0. (This
means you will calculate the minimum distance |p− q| where p is on the surface and q is
on the plane.)

Solution:

First method: If a plane P is defined by the equation Ax + By + Cz = D, then the
distance from a point q ∈ R3 to the plane P is given by the formula |q · ~n|, where ~n =
(A,B,C)/

√
A2 + B2 + C2. This formula can be easily derived by drawing some figure!

By roughly sketching the graphs of z = x2 + y2 + 10 and x + 2y − z = 0 we first notice
that they do not intersect. If we choose q from the surface z = x2 + y2 + 10 and let
~n = (1, 2,−1)/

√
6, we see that q · ~n is either always positive or always negative. This

value is negative at (0, 0, 10) on the surface so we can take the distance function as −q ·~n.
Putting in z = x2 + y2 + 10 we find the function

f(x, y) = x2 + y2 + 10− x− 2y, (x, y) ∈ R2

as the function to minimize. (We will divide this by
√

6 later.)

fx = 2x− 1 = 0, fy = 2y − 2 = 0 gives (1/2, 1) as the only critical point.

fxx = fyy = 2, fxy = 0, so ∆ = 4 > 0 and the critical point is a local minimum. But it is
the only critical point, so it gives the global minimum.

The minimal distance is then calculated as f(1/2, 1)/
√

6 =
35

4
√

6
.

Second method: Using the above analysis a little(!) we decide to minimize the function



f(x, y, z) =
1√
6

(z − x− 2y) subject to the condition g(x, y, z) = x2 + y2 + 10− z = 0.

We use Lagrange’s method.

∇f =
1√
6

(−1,−2, 1), ∇g = (2x, 2y,−1).

From ∇f = λ∇g we first solve for λ and then find the critical point (1/2, 1, 45/4), which

gives f =
35

4
√

6
. By calculating f at another point, we find that this value is minimum.

5: Consider the surface S given by f(x, y, z) = 0 and assume that p0 = (x0, y0, z0) is on

the surface with
∂f

∂z
(p0) 6= 0.

(i) Write the equation of the tangent plane to the surface S at p0. From the equation
of the tangent plane solve for z. Geometrically this is the linear approximation for the
surface at the point p0.
(ii) Now consider z as a function of the two independent variables x and y, say z =
g(x, y) with z0 = g(x0, y0). Assume as above that f(x, y, g(x, y)) = 0. Write a linear
approximation for g at (x0, y0). i.e. write

L(x, y) = g(x0, y0) +
∂g

∂x
(x0, y0) (x− x0) +

∂g

∂y
(x0, y0) (y − y0).

Algebraically this is the linear approximation of the surface at the point p0. How does
this compare to the one found in the previous part? (This means you must calculate the
partial derivatives of g in terms of the partial derivatives of f at the point p0.)

Solution:

(i): The equation of the tangent plane to S at p0 is given by

fx(p0)(x− x0) + fy(p0)(y − y0) + fz(p0)(z − z0) = 0

from which we solve for z to find

z = z0 − fx(p0)

fz(p0)
(x− x0)− fy(p0)

fz(p0)
(y − y0).

(ii): Differentiating both sides of the equation f(x, y, g(x, y)) = 0 with respect to x and
y respectively we find

fx(p0) + fz(p0)gx(x0, y0) = 0

fy(p0) + fz(p0)gy(x0, y0) = 0



which we solve to find

gx(x0, y0) =
fx(p0)

fz(p0)
and gy(x0, y0) =

fy(p0)

fz(p0)
.

putting these into the given linear approximation, together with z0 = g(x0, y0), we find

L(x, y) = z0 − fx(p0)

fz(p0)
(x− x0)− fy(p0)

fz(p0)
(y − y0)

which is precisely what we found in part (i).

Send comments and corrections to sertoz@bilkent.edu.tr please.


