Due on April 3, 2006, Monday.

MATH 114 Homework 6 - Solutions

1: Let $f(x, y)=8 x^{3}+y^{3}+6 x y$. Find local min/max, global min/max and saddle points, if they exist, for this function.

Solution:

$f_{x}=24 x^{2}+6 y=0$ and $f_{y}=3 y^{2}+6 x=0$ gives the critical points as $(0,0)$ and $(-1 / 2,-1)$.
We now apply the second derivative test:
$f_{x x}=48 x, f_{x y}=6, f_{y y}=6 y$, so $\Delta(x, y)=288 x y-36$.
$\Delta(0,0)<0$, so $(0,0)$ is a saddle point.
$\Delta(-1 / 2,-1)>0, f_{x x}(-1 / 2,-1)<0$, so this is a local maximum point.
f has no global min/max since f becomes $\pm \infty$ as $(x, y) \rightarrow(\pm \infty, 0)$.

2: Let $f(x, y)=x y+2 x-\ln \left(x^{2} y\right)$ where $x, y>0$. Find local min/max, global min/max and saddle points, if they exist, for this function.

Solution:

$f_{x}=y+2-\frac{2}{x}=0, f_{y}=x-\frac{1}{y}=0$ gives $(1 / 2,2)$ as the only critical point.
$f_{x x}=\frac{2}{x^{2}}, f_{x y}=1, f_{y y}=\frac{1}{y^{2}}, \Delta=\frac{2}{x^{2} y^{2}}-1$.
At the critical point, $f_{x x}>0$ and $\Delta>0$, so the critical point is a local minimum.
f becomes infinite as (x, y) approaches the x-axis or the y-axis, which are the boundaries of the domain of f. Therefore the critical point $(1 / 2,2)$ gives the global minimum of f.

3: Let $f(x, y)=x^{2}+k x y+y^{2}$ where $k \in \mathbb{R}$. Find local min/max, global min/max and saddle points, if they exist, for this function, for each value of k.

Solution:

$f_{x}=2 x+k y=0, f_{y}=k x+2 y=0$ gives $y\left(2-\frac{k^{2}}{2}\right)=0$.

If $y=0$, then $(0,0)$ is the only critical point of f.
$f_{x x}=f_{y y}=2, f_{x y}=k$ so $\Delta=4-k^{2}$.
If $|k|<2$, then $(0,0)$ is a local minimum point, but since it is the only critical point, it gives the global minimum.

If $|k|>2$, then $(0,0)$ is a saddle point.
If $k=2$, then $f=(x+y)^{2} \geq 0$ and has a global minimum along the line $y=-x$.
If $k=-2$, then $f=(x-y)^{2} \geq 0$ and has a global minimum along the line $y=x$.
Finally, if $y \neq 0$, then $k= \pm 2$ which is already examined.

4: Find the distance from the surface $z=x^{2}+y^{2}+10$ to the plane $x+2 y-z=0$. (This means you will calculate the minimum distance $|p-q|$ where p is on the surface and q is on the plane.)

Solution:

First method: If a plane P is defined by the equation $A x+B y+C z=D$, then the distance from a point $q \in \mathbb{R}^{3}$ to the plane P is given by the formula $|q \cdot \vec{n}|$, where $\vec{n}=$ $(A, B, C) / \sqrt{A^{2}+B^{2}+C^{2}}$. This formula can be easily derived by drawing some figure!

By roughly sketching the graphs of $z=x^{2}+y^{2}+10$ and $x+2 y-z=0$ we first notice that they do not intersect. If we choose q from the surface $z=x^{2}+y^{2}+10$ and let $\vec{n}=(1,2,-1) / \sqrt{6}$, we see that $q \cdot \vec{n}$ is either always positive or always negative. This value is negative at $(0,0,10)$ on the surface so we can take the distance function as $-q \cdot \vec{n}$. Putting in $z=x^{2}+y^{2}+10$ we find the function

$$
f(x, y)=x^{2}+y^{2}+10-x-2 y, \quad(x, y) \in \mathbb{R}^{2}
$$

as the function to minimize. (We will divide this by $\sqrt{6}$ later.)
$f_{x}=2 x-1=0, f_{y}=2 y-2=0$ gives $(1 / 2,1)$ as the only critical point.
$f_{x x}=f_{y y}=2, f_{x y}=0$, so $\Delta=4>0$ and the critical point is a local minimum. But it is the only critical point, so it gives the global minimum.

The minimal distance is then calculated as $f(1 / 2,1) / \sqrt{6}=\frac{35}{4 \sqrt{6}}$.
Second method: Using the above analysis a little(!) we decide to minimize the function
$f(x, y, z)=\frac{1}{\sqrt{6}}(z-x-2 y)$ subject to the condition $g(x, y, z)=x^{2}+y^{2}+10-z=0$.
We use Lagrange's method.
$\nabla f=\frac{1}{\sqrt{6}}(-1,-2,1), \nabla g=(2 x, 2 y,-1)$.
From $\nabla f=\lambda \nabla g$ we first solve for λ and then find the critical point ($1 / 2,1,45 / 4$), which gives $f=\frac{35}{4 \sqrt{6}}$. By calculating f at another point, we find that this value is minimum.

5: Consider the surface S given by $f(x, y, z)=0$ and assume that $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is on the surface with $\frac{\partial f}{\partial z}\left(p_{0}\right) \neq 0$.
(i) Write the equation of the tangent plane to the surface S at p_{0}. From the equation of the tangent plane solve for z. Geometrically this is the linear approximation for the surface at the point p_{0}.
(ii) Now consider z as a function of the two independent variables x and y, say $z=$ $g(x, y)$ with $z_{0}=g\left(x_{0}, y_{0}\right)$. Assume as above that $f(x, y, g(x, y))=0$. Write a linear approximation for g at $\left(x_{0}, y_{0}\right)$. i.e. write

$$
L(x, y)=g\left(x_{0}, y_{0}\right)+\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Algebraically this is the linear approximation of the surface at the point p_{0}. How does this compare to the one found in the previous part? (This means you must calculate the partial derivatives of g in terms of the partial derivatives of f at the point p_{0}.)

Solution:

(i): The equation of the tangent plane to S at p_{0} is given by

$$
f_{x}\left(p_{0}\right)\left(x-x_{0}\right)+f_{y}\left(p_{0}\right)\left(y-y_{0}\right)+f_{z}\left(p_{0}\right)\left(z-z_{0}\right)=0
$$

from which we solve for z to find

$$
z=z_{0}-\frac{f_{x}\left(p_{0}\right)}{f_{z}\left(p_{0}\right)}\left(x-x_{0}\right)-\frac{f_{y}\left(p_{0}\right)}{f_{z}\left(p_{0}\right)}\left(y-y_{0}\right)
$$

(ii): Differentiating both sides of the equation $f(x, y, g(x, y))=0$ with respect to x and y respectively we find

$$
\begin{aligned}
& f_{x}\left(p_{0}\right)+f_{z}\left(p_{0}\right) g_{x}\left(x_{0}, y_{0}\right)=0 \\
& f_{y}\left(p_{0}\right)+f_{z}\left(p_{0}\right) g_{y}\left(x_{0}, y_{0}\right)=0
\end{aligned}
$$

which we solve to find

$$
g_{x}\left(x_{0}, y_{0}\right)=\frac{f_{x}\left(p_{0}\right)}{f_{z}\left(p_{0}\right)} \text { and } g_{y}\left(x_{0}, y_{0}\right)=\frac{f_{y}\left(p_{0}\right)}{f_{z}\left(p_{0}\right)}
$$

putting these into the given linear approximation, together with $z_{0}=g\left(x_{0}, y_{0}\right)$, we find

$$
L(x, y)=z_{0}-\frac{f_{x}\left(p_{0}\right)}{f_{z}\left(p_{0}\right)}\left(x-x_{0}\right)-\frac{f_{y}\left(p_{0}\right)}{f_{z}\left(p_{0}\right)}\left(y-y_{0}\right)
$$

which is precisely what we found in part (i).

Send comments and corrections to sertoz@bilkent.edu.tr please.

