Due on April 3, 2006, Monday, Class time. No late submissions!

MATH 114 Homework 6

1: Let $f(x, y)=8 x^{3}+y^{3}+6 x y$. Find local min/max, global min/max and saddle points, if they exist, for this function.

2: Let $f(x, y)=x y+2 x-\ln \left(x^{2} y\right)$ where $x, y>0$. Find local min/max, global min/max and saddle points, if they exist, for this function.

3: Let $f(x, y)=x^{2}+k x y+y^{2}$ where $k \in \mathbb{R}$. Find local min/max, global min/max and saddle points, if they exist, for this function, for each value of k.

4: Find the distance from the surface $z=x^{2}+y^{2}+10$ to the plane $x+2 y-z=0$. (This means you will calculate the minimum distance $|p-q|$ where p is on the surface and q is on the plane.)

5: Consider the surface S given by $f(x, y, z)=0$ and assume that $p_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is on the surface with $\frac{\partial f}{\partial z}\left(p_{0}\right) \neq 0$.
(i) Write the equation of the tangent plane to the surface S at p_{0}. From the equation of the tangent plane solve for z. Geometrically this is the linear approximation for the surface at the point p_{0}.
(ii) Now consider z as a function of the two independent variables x and y, say $z=$ $g(x, y)$ with $z_{0}=g\left(x_{0}, y_{0}\right)$. Assume as above that $f(x, y, g(x, y))=0$. Write a linear approximation for g at $\left(x_{0}, y_{0}\right)$. i.e. write

$$
L(x, y)=g\left(x_{0}, y_{0}\right)+\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Algebraically this is the linear approximation of the surface at the point p_{0}. How does this compare to the one found in the previous part? (This means you must calculate the partial derivatives of g in terms of the partial derivatives of f at the point p_{0}.)

