Due on May 5, 2006, Friday, Class time. No late submissions!

MATH 114 Homework 8

1: Calculate $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}=x \mathbf{i}+y^{2} \mathbf{j}+z^{3} \mathbf{k}$, and C is the helix $\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$, $0 \leq t \leq \pi$.

2: Calculate $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$, where $\mathbf{F}=\left(x^{2}-1\right) \mathbf{i}+(y+2) \mathbf{j}$, and C is that part of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ lying in the upper half plane and traversed clockwise.

3: Calculate $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}=\left(e^{x} \cos y+y z\right) \mathbf{i}+\left(x z-e^{x} \sin y\right) \mathbf{j}+(x y+z) \mathbf{k}$, and C is the path $\left(\cos t+\sin ^{2} t\right) \mathbf{i}+\left(\sin t+1+\ln \left(1+\sin ^{2} t\right)\right) \mathbf{j}+|\cos t| \sqrt{2-2 \sin t} \mathbf{k}, 0 \leq t \leq \pi$.

4: Calculate $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$, where $\mathbf{F}=\arctan (y / x) \mathbf{i}+\ln \left(x^{2}+y^{2}\right) \mathbf{j}$, and C is the positively oriented boundary of the region described in polar coordinates by the inequalities $1 \leq$ $r \leq 2$ and $0 \leq \theta \leq \pi / 2$.

5: Find the area of the closed figure parameterized by $\cos ^{3} \theta \mathbf{i}+\sin ^{3} \theta \mathbf{j}, 0 \leq \theta \leq 2 \pi$.

