Due on May 9, 2006, Tuesday, Class time. No late submissions!

MATH 114 Homework 9 - The last one :-)
 Solutions

1: Intersect the sphere $x^{2}+y^{2}+z^{2}=196$ with the cylindrical surface $x^{2}+y^{2}=14 y$, $z \geq 0$, and calculate (i) the area of the spherical cap so formed and (ii) the volume under this cap and over the xy-plane.

Solution (i): Let $f(x, y, z)=x^{2}+y^{2}+z^{2}-196$. Then $|\nabla f|=28$ and $|\nabla f \cdot \mathbf{k}|=2 z$, and $d \sigma=\frac{14}{z}$. Since the denominator vanishes at a certain point in the domain, our integral should not pass that point.

The disk bounded by the circle $x^{2}+y^{2}=14 y$ is represented by $r=14 \sin \theta, 0 \leq \theta \leq \pi$ in polar coordinates. Let R denote the part of this disc lying in the first quadrant of the $x y$-plane. Since $z=0$ for $\theta=\pi / 2$, this is the right region of integration.

$$
\begin{aligned}
\frac{1}{2} \text { Area }=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y & =\iint_{R} \frac{14}{z} d x d y \\
& =14 \iint_{R} \frac{1}{\sqrt{196-x^{2}-y^{2}}} d x d y=14 \int_{0}^{\pi / 2} \int_{0}^{14 \sin \theta} \frac{r d r d \theta}{\sqrt{196-r^{2}}} \\
& =14 \int_{0}^{\pi / 2}\left(-\left.\sqrt{196-r^{2}}\right|_{0} ^{14 \sin \theta}\right) d \theta \\
& =14 \int_{0}^{\pi / 2}(14-14 \cos \theta) d \theta=14\left(14 \theta-\left.14 \sin \theta\right|_{0} ^{\pi / 2}\right) \\
& =98 \pi-196 . \\
\text { Area } & =196 \pi-392 \approx 223.75 .
\end{aligned}
$$

Solution (ii):
Volume $=2 \iint_{R} z \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} d x d y=28 \iint d x d y=28($ Area of $R)=28(49 \pi / 2)=686 \pi$.

2: Find the area of that portion of the sphere $x^{2}+y^{2}+z^{2}=4$ lying between the planes $z=\sqrt{3}$ and $z=-1$.

Solution: We can parameterize this region by $r(\phi, \theta)=(2 \sin \phi \cos \theta, 2 \sin \phi \sin \theta, 2 \cos \phi), 0 \leq \theta \leq 2 \pi, \pi / 6 \leq \phi \leq 2 \pi / 3$. Then

$$
\text { Area }=\int_{0}^{2 \pi} \int_{0}^{2 \pi / 3}\left|r_{\phi} \times r_{\theta}\right| d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{2 \pi / 3} 4 \sin \phi d \phi d \theta=4(1+\sqrt{3}) \pi
$$

3: Find an equation for the plane through the origin such that the circulation of the flow $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$ around the circle C of intersection of the plane with the sphere $x^{2}+y^{2}+z^{2}=4$ is a maximum. Recall that the circulation of the flow \mathbf{F} around the circle C is given by $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where \mathbf{r} is a smooth parametrization of C. What happens if we replace the radius of the sphere by some other value?

Solution: Let $A x+B y+C z=0$ be an equation of that plane. Assume without loss of generality that (A, B, C) is a unit vector, i.e. $A^{2}+B^{2}+C^{2}=1$. Change the circulation integral along the given circle to a curl integral on the surface D of the disk bounded by this circle. The normal to that disk is $n=(A, B, C)$.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{D} \operatorname{curl} \mathbf{F} \cdot n d \sigma=\iint_{D}(1,1,1) \cdot(A, B, C) d \sigma \\
& =(A+B+C) \iint_{D} d \sigma=(A+B+C)(4 \pi)
\end{aligned}
$$

Maximize $A+B+C$ subject to the constraint $A^{2}+B^{2}+C^{2}=1$. This gives $A=B=$ $C=1 / \sqrt{3}$. Therefore an equation of the desired plane is $x+y+z=0$.

4: Calculate the area of the region on the Earth bounded by the meridians 120° and 150° west longitude and the circles 30° and 45° north latitude, assuming that the Earth is spherical with radius $R \mathrm{~km}$.

Solution: By rotating the earth a little bit(!) we can assume that the parametrization of the required region is given by $\mathbf{r}=(R \sin \phi \cos \theta, R \sin \phi \sin \theta, R \cos \phi)$, where $0 \leq \theta \leq \pi / 6$ and $0 \leq \phi \leq \pi / 12$.

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 6} \int_{0}^{\pi / 12}\left|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right| d \phi d \theta \\
& =R^{2} \int_{0}^{\pi / 6} \int_{0}^{\pi / 12} \sin \phi d \phi d \theta=R^{2}\left(\left.\theta\right|_{0} ^{\pi / 6}\right)\left(-\left.\cos \phi\right|_{0} ^{\pi / 12}\right)=R^{2}(\pi / 6)(1-\cos \pi / 12)
\end{aligned}
$$

where $\cos \pi / 12$ can be calculated from half angle formula to find

$$
\text { Area }=R^{2}(\pi / 6)\left(1-(1 / 2)(\sqrt{3}+2)^{(1 / 2)}\right) \approx(0,01784) R^{2}
$$

To convince yourself about the validity of this formula observe that the whole surface area of the sphere will be given by

$$
\text { Area of sphere }=R^{2}\left(\left.\theta\right|_{0} ^{2 \pi}\right)\left(-\left.\cos \phi\right|_{0} ^{\pi}\right)=4 \pi R^{2} .
$$

5: Find the outward flux of the vector field $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ across the boundary ∂D of the cube D cut from the first octant by the planes $x=1, y=1$ and $z=1$. The outward flux of \mathbf{F} on ∂D is given by the integral $\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} d \sigma$, where \mathbf{n} is the unit outward normal on the faces of ∂D.

Solution: Using divergence theorem, this integral becomes a triple integral on D.

$$
\begin{aligned}
\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} d \sigma & =\iiint_{D} \nabla \cdot \mathbf{F} d V \\
& =2 \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(x+y+z) d x d y d z \\
& =3
\end{aligned}
$$

Send your comments to sertoz@bilkent.edu.tr please.

