Due on May 9, 2006, Tuesday, Class time. No late submissions!

MATH 114 Homework 9 – Last one :-)

- 1: Intersect the sphere $x^2 + y^2 + z^2 = 196$ with the cylindrical surface $x^2 + y^2 = 14y$, $z \ge 0$, and calculate (i) the area of the spherical cap so formed and (ii) the volume under this cap and over the xy-plane.
- 2: Find the area of that portion of the sphere $x^2 + y^2 + z^2 = 4$ lying between the planes $z = \sqrt{3}$ and z = -1.
- 3: Find an equation for the plane through the origin such that the circulation of the flow $\mathbf{F} = z \mathbf{i} + x \mathbf{j} + y \mathbf{k}$ around the circle *C* of intersection of the plane with the sphere $x^2 + y^2 + z^2 = 4$ is a maximum. Recall that the circulation of the flow \mathbf{F} around the circle *C* is given by $\int_C \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{r} is a smooth parametrization of *C*. What happens if we replace the radius of the sphere by some other value?
- 4: Calculate the area of the region on the Earth bounded by the meridians 120° and 150° west longitude and the circles 30° and 45° north latitude, assuming that the Earth is spherical with radius R km.
- 5: Find the outward flux of the vector field $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$ across the boundary ∂D of the cube D cut from the first octant by the planes x = 1, y = 1 and z = 1. The outward flux of \mathbf{F} on ∂D is given by the integral $\int \int_{\partial D} \mathbf{F} \cdot \mathbf{n} \, d\sigma$, where \mathbf{n} is the unit outward normal on the faces of ∂D .