Due on May 9, 2006, Tuesday, Class time. No late submissions!

MATH 114 Homework 9 - Last one :-)

1: Intersect the sphere $x^{2}+y^{2}+z^{2}=196$ with the cylindrical surface $x^{2}+y^{2}=14 y$, $z \geq 0$, and calculate (i) the area of the spherical cap so formed and (ii) the volume under this cap and over the xy-plane.

2: Find the area of that portion of the sphere $x^{2}+y^{2}+z^{2}=4$ lying between the planes $z=\sqrt{3}$ and $z=-1$.

3: Find an equation for the plane through the origin such that the circulation of the flow $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$ around the circle C of intersection of the plane with the sphere $x^{2}+y^{2}+z^{2}=4$ is a maximum. Recall that the circulation of the flow \mathbf{F} around the circle C is given by $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where \mathbf{r} is a smooth parametrization of C. What happens if we replace the radius of the sphere by some other value?

4: Calculate the area of the region on the Earth bounded by the meridians 120° and 150° west longitude and the circles 30° and 45° north latitude, assuming that the Earth is spherical with radius $R \mathrm{~km}$.

5: Find the outward flux of the vector field $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ across the boundary ∂D of the cube D cut from the first octant by the planes $x=1, y=1$ and $z=1$. The outward flux of \mathbf{F} on ∂D is given by the integral $\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} d \sigma$, where \mathbf{n} is the unit outward normal on the faces of ∂D.

