Date: 4 March 2006, Saturday
Instructor: Ali Sinan Sertöz
Time: 10:00-12:00

Math 114 Calculus - Midterm Exam I - Solutions

Q-1-a) Does the improper integral $\int_{3}^{\infty} \frac{e^{-x^{2}}}{(\ln x)^{3}} d x$ converge or diverge?
Solution: $\ln x>1$ for $x \geq 3$, so $\frac{e^{-x^{2}}}{(\ln x)^{3}}<e^{-x^{2}} \leq e^{-x}$ for $x \geq 1$.
$\int_{3}^{\infty} e^{-x} d x=e^{-3}<\infty$, so the given integral converges by direct comparison.

Q-1-b) Find the value, if it exists, of the improper integral $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{k}}$, where $k \geq 1$ is any real number.

Solution: Use the substitution $u=\ln x$ to write
$\int_{2}^{\infty} \frac{d x}{x(\ln x)^{k}}=\int_{\ln 2}^{\infty} \frac{d u}{u^{k}}= \begin{cases}\left.\ln u\right|_{\ln 2} ^{\infty}=\infty & \text { if } k=1, \\ \left.\frac{1}{(1-k) u^{k-1}}\right|_{\ln 2} ^{\infty}=\frac{1}{(k-1)(\ln 2)^{k-1}} & \text { if } k>1 .\end{cases}$

Q-2-a) Find $\lim _{n \rightarrow \infty}\left(\frac{7 n+6}{7 n+4}\right)^{5 n}$, if it exists.
Solution: Let $A=\left(\frac{7 n+6}{7 n+4}\right)^{5 n}$. Then
$\lim _{n \rightarrow \infty} \ln A=5 \lim _{n \rightarrow \infty} \frac{\ln \left(\frac{7 n+6}{7 n+4}\right)}{\frac{1}{n}}$.
Now using L'Hopital's rule we get
$\lim _{n \rightarrow \infty} \ln A=5 \cdot \frac{7 n+4}{7 n+6} \cdot \frac{14 n^{2}}{49 n^{2}+56 n+16}=\frac{10}{7}$.
Hence $\lim _{n \rightarrow \infty}\left(\frac{7 n+6}{7 n+4}\right)^{5 n}=e^{10 / 7}$.
We can also calculate this limit as follows: First let $m=7 n+4$. Then
$\lim _{n \rightarrow \infty}\left(\frac{7 n+6}{7 n+4}\right)^{5 n}=\lim _{m \rightarrow \infty}\left(\frac{m+2}{m}\right)^{5\left(\frac{m-4}{7}\right)}=\lim _{m \rightarrow \infty}\left[\left(1+\frac{2}{m}\right)^{m}\right]^{\frac{5}{7}}\left[\left(1+\frac{2}{m}\right)^{-\frac{20}{7}}\right]=\left[e^{2}\right]^{\frac{5}{7}}[1]=$ $e^{10 / 7}$.

Q-2-b) Does the series $\sum_{n=1}^{\infty} \frac{1}{1+\frac{1}{2}+\cdots+\frac{1}{n}}$ converge or diverge?
Solution: Observe that $1+\frac{1}{2}+\cdots+\frac{1}{n}<1+\ln n \leq n$ for all $n \geq 1$, where we write the first inequality by examining the graph of $y=1 / x$ and the second inequality is obvious if you consider the function $f(x)=x-1-\ln x$ for $x \geq 1$.

An easier observation is that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}<1+1+1+\cdots+1=n$ for $n>1$.
Now if we let $a_{n}=\frac{1}{1+\frac{1}{2}+\cdots+\frac{1}{n}}$, we see that $a_{n} \geq \frac{1}{n}$ for all $n \geq 1$, and $\sum_{n=1}^{\infty} \frac{1}{1+\frac{1}{2}+\cdots+\frac{1}{n}}$ diverges by direct comparison with the harmonic series.

Q-3) Find all values of x for which the power series $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} x^{n}$ converges.
Solution: First let $a_{n}(x)=\frac{n^{n}}{n!} x^{n}$ and use the ratio test.
$\left|\frac{a_{n+1}(x)}{a_{n}(x)}\right|=\left(1+\frac{1}{n}\right)^{n}|x| \rightarrow e|x|$ as $n \rightarrow \infty$. So the series converges absolutely for $|x|<1 / e$.
To check the end points we may use Stirling's formula, see page 759 exercise 90 and page 640 exercise 50 .
As a consequence of Stirling's formula, for large n we have, $n!=\left(\frac{n+1}{e}\right)^{n+1} \sqrt{\frac{2 \pi}{n+1}}(1+\epsilon(n))$ where $\lim _{n \rightarrow \infty} \epsilon(n)=0$.

Hence $\left|a_{n}(\pm 1 / e)\right|=\frac{n^{n}}{n!e^{n}}=\frac{n^{n}}{(n+1)^{n}} \cdot \frac{e}{\sqrt{2 \pi}} \cdot \frac{1}{(n+1)^{1 / 2}} \cdot \frac{1}{1+\epsilon(n)} \rightarrow 0$ as $n \rightarrow \infty$.
Also observe that $\left|\frac{a_{n+1}\left(\frac{ \pm 1}{e}\right)}{a_{n}\left(\frac{ \pm 1}{e}\right)}\right|=\frac{\left(1+\frac{1}{n}\right)^{n}}{e}<1$ for all $n \geq 1$, so $\left|a_{n+1}\left(\frac{ \pm 1}{e}\right)\right|<\left|a_{n}\left(\frac{ \pm 1}{e}\right)\right|$ for all $n \geq 1$.

From these we first conclude that the series converges for $x=-\frac{1}{e}$ by the alternating series test.
For $x=\frac{1}{e}$, we limit compare the series with $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ which diverges by p-test, $p<1$.
$\frac{a_{n}(1 / e)}{1 / n^{1 / 2}}=\frac{e}{\left(1+\frac{1}{n}\right)^{n}} \cdot \frac{1}{\sqrt{2 \pi}} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \cdot \frac{1}{1+\epsilon(n)} \rightarrow \frac{1}{\sqrt{2 \pi}}$ as $n \rightarrow \infty$.
So the series diverges for $x=\frac{1}{e}$, and the interval of convergence is $\left[-\frac{1}{e}, \frac{1}{e}\right.$).

Q-4) Find a power series solution to the initial value problem

$$
y^{\prime}-y=\frac{x^{2}}{2}, \quad y(0)=0
$$

Can you recognize the solution in terms of elementary functions?
Solution: Putting $y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$ we immediately find that $a_{0}=0$, $a_{1}=0, a_{2}=0, a_{3}=1 / 3$!, and in general $(n+1) a_{n+1}-a_{n}=0$ for $n>2$. This gives $a_{n}=\frac{1}{n!}$ for $n>2$.

Thus $y=\sum_{n=3}^{\infty} \frac{x^{n}}{n!}=e^{x}-\frac{x^{2}}{2}-x-1$.

Q-5) Find $\lim _{x \rightarrow 0} \frac{\left(\sin x^{2}\right)\left(e^{x}-1\right)-x^{3}}{(1-\cos 2 x)\left(e^{x^{2}}-1\right)}$, if it exists.
Solution: We use the Taylor series of the functions involved to find
$\lim _{x \rightarrow 0} \frac{\left(\sin x^{2}\right)\left(e^{x}-1\right)-x^{3}}{(1-\cos 2 x)\left(e^{x^{2}}-1\right)}=\lim _{x \rightarrow 0} \frac{\frac{1}{2} x^{4}+\frac{1}{6} x^{5}+\cdots}{2 x^{4}+\frac{1}{3} x^{6}+\cdots}=\frac{1}{4}$.

