$$
\text { Math } 114 \text { Calculus - Midterm Exam I - Solutions }
$$

Q-1) Does the following improper integral converge or diverge?

$$
\int_{3}^{\infty} \frac{\ln x}{x(x-1)(x-2)} d x
$$

Solution:

Let $f(x)=\frac{\ln x}{x(x-1)(x-2)}$ and $g(x)=\frac{1}{x^{2}}$.
$\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$, so $0<f(x)<g(x)$ for all large x. Since $\int_{3}^{\infty} g(x) d x$ converges, so does the original integral by direct comparison.

Q-2) Does the following series converge or diverge?

$$
\sum_{n=1}^{\infty} \frac{n}{5^{n}}
$$

If it converges, find its exact value.
Solution: We observe that on one hand

$$
x\left(\frac{1}{1-x}\right)^{\prime}=\frac{x}{(1-x)^{2}}
$$

and on the other hand

$$
x\left(\frac{1}{1-x}\right)^{\prime}=x\left(\sum_{n=0}^{\infty} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n x^{n} .
$$

So we have

$$
\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n}
$$

Putting in $x=1 / 5$ gives the value of the infinite sum as $\frac{5}{16}$.

Q-3) Find a power series solution of the form

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
$$

for the following initial value problem:

$$
y^{\prime \prime}-x y=2, \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Find the interval of convergence for the resulting series.

Solution:

$$
y^{\prime \prime}-x y=2 a_{2}+\left(2 \cdot 3 a_{3}-a_{0}\right)+\cdots+\left(n(n+1) a_{n+1}-a_{n-3}\right)+\cdots=2 .
$$

From this and the initial values we find that $a_{0}=0, a_{0}=0$ and $a_{2}=1$.
In general we find that $a_{3 n}=0, a_{3 n+1}=0$ and $a_{3 n+2}=\frac{2 \cdot 3^{n}(n!)}{(3 n+2)!}$. for $n \geq 1$.
This gives the solution as

$$
y(x)=2 \sum_{n=0}^{\infty} \frac{3^{n}(n!)}{(3 n+2)!} x^{3 n+2} .
$$

By the ratio test we see that this series converges absolutely for all $x \in \mathbb{R}$.

Q-4) Find the interval of convergence for the following power series:

$$
\sum_{n=0}^{\infty} \frac{3^{n}(n!)^{2}}{(2 n)!} x^{n}
$$

Solution:

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{3(n+1)^{2}}{(2 n+1)(2 n+2)}|x| \rightarrow \frac{3}{4}|x| \text { as } n \rightarrow \infty
$$

Therefore the series converges absolutely for $|x|<4 / 3$.
Next we check the end points.
For $|x|=4 / 3$, we see that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2 n+2}{2 n+1}>1,
$$

so $\left|a_{n+1}\right|>\left|a_{n}\right|$ and hence the general term does not converge to zero. The series then diverges for $x= \pm 4 / 3$.

Hence the interval of convergence is $-4 / 3<x<4 / 3$.

Q-5) Find the interval of convergence for the series

$$
\sum_{n=2}^{\infty} \frac{\ln n}{n}(x-3)^{n}
$$

Solution:

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(\ln n+1)(n)}{(\ln n)(n+1)}|x-3| \rightarrow|x-3| \text { as } n \rightarrow \infty
$$

Therefore the series converges absolutely for $|x-3|<1$.
Next we check the end points.
For $x=4$, the series diverges since $\frac{\ln n}{n}>\frac{1}{n}$.
For $x=2$, the series converges by the alternating series test. Here check that $\frac{\ln x}{x}$ is a decreasing function going to zero as x goes to infinity.

Hence the interval of convergence is $2 \leq x<4$.

Bonus:) Fix a positive integer m and a positive real number α. Consider the sequence defined by the relations:

$$
a_{0}=1, \quad a_{n}=\sqrt[m]{\alpha \sqrt[m]{a_{n-1}}} \text { for } n \geq 1
$$

Find all pairs $(m, \alpha) \in \mathbb{N}^{+} \times \mathbb{R}^{+}$for which the sequence a_{n} converges as n goes to infinity. For those pairs (m, α) for which the sequence converges, find the limit of the sequence.

Solution:

For $m=1$, the sequence is $a_{n}=\alpha^{n}$. It converges to 1 if $\alpha=1$ and converges to zero if $\alpha<1$. For other values of α the sequence diverges to infinity.

For $m>1$, the sequence is $a_{n}=\alpha^{\frac{1}{m}+\frac{1}{m^{3}}+\cdots+\frac{1}{m^{2 n-1}}}$.
$\lim _{n \rightarrow \infty}\left(\frac{1}{m}+\frac{1}{m^{3}}+\cdots+\frac{1}{m^{2 n-1}}\right)=\frac{m}{m^{2}-1}$, so $\lim _{n \rightarrow \infty} a_{n}=\alpha^{\frac{m}{m^{2}-1}}$ for all $\alpha>0$.

Please forward any comments or questions to sertoz@bilkent.edu.tr

