\qquad
\qquad

Math 114 Calculus II - Final Exam Make-Up - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. Also note that if you write down something which you don't believe yourself, the chances are that I will not believe it either.

Q-1) Check if the following series converge or diverge:
a) $\sum_{n=1}^{\infty} \sin \frac{1}{n!}$ and
b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$.

Solution:

We know that $\sum 1 / n$! converges. Use limit comparison test.

$$
\lim _{n \rightarrow \infty} \frac{\sin (1 / n!)}{1 / n!}=1
$$

hence $\sum \sin (1 / n!)$ converges.
For the second series use integral test.

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}=\left(-\left.\frac{1}{\ln x}\right|_{2} ^{\infty}\right)<\infty
$$

so the series converges.

Q-2) Evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left(\frac{x-y}{x^{2}+y^{2}}, \frac{x+y}{x^{2}+y^{2}}\right)$ and C is the square in the plane with vertices at the points $(1,0),(0,1),(-1,0)$ and $(0,-1)$, traversed counterclockwise.

Solution:

Let $F=(M, N)$. Observe that $M_{y}=N_{x}$. So if C^{\prime} is a circle of radius R centered at the origin with $0<R<1 / \sqrt{2}$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r}
$$

which follows from Green's theorem.
Now parametrizing C^{\prime} as $\mathbf{r}(t)=(R \cos t, R \sin t)$ and substituting in, we find that $\mathbf{F} \cdot d \mathbf{r}=d t$. Hence the integral becomes 2π.

Q-3) Find a normal vector and equations of the tangent plane and normal line to the graph $z=\sin (x y)$ at the point where $x=\pi / 3$ and $y=-1$.

Solution:

The point on the graph is $(\pi / 3,-1,-\sqrt{3} / 2)$.
Tangent plane: $3 x-\pi y+6 z=2 \pi-3 \sqrt{3}$.
The normal line: $\frac{6 x-2 \pi}{-3}=\frac{6 y+6}{\pi}=\frac{6 z+3 \sqrt{3}}{-6}$.

Q-4) Find the volume of the region R lying below the plane $z=3-2 y$ and above the paraboloid $z=x^{2}+y^{2}$.

Solution:

$$
\text { Volume }=\int_{-3}^{1} \int_{-\sqrt{3-2 y-y^{2}}}^{\sqrt{3-2 y-y^{2}}} \int_{x^{2}+y^{2}}^{3-2 y} d z d x d y=8 \pi
$$

Q-5) Find the volume of the region lying inside all three of the circular cylinders

$$
x^{2}+y^{2}=a^{2}, \quad x^{2}+z^{2}=a^{2} \quad \text { and } y^{2}+z^{2}=a^{2}
$$

where $a>0$.

Solution:

After a careful sketching of the solid under question, we find that the volume is

$$
\begin{aligned}
V & =16\left(\int_{0}^{a / \sqrt{2}} \int_{0}^{x} \sqrt{a^{2}-x^{2}} d y d x+\int_{a / \sqrt{2}}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}} d y d x\right) \\
& =16\left(1-\frac{1}{\sqrt{2}}\right) a^{3} .
\end{aligned}
$$

