\qquad

Math 114 Calculus - Homework 1 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Assume that each $a_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho$. Show that $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho$.

Solution:

Case-1: $\rho>0$.
Let $\epsilon>0$ be chosen arbitrarily such that $0<\epsilon<\rho$. Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho$, there exists an index N such that

$$
\begin{equation*}
\rho-\epsilon<\frac{a_{n+1}}{a_{n}}<\rho+\epsilon, \text { for all } n \geq N . \tag{1}
\end{equation*}
$$

In particular, since $a_{n}>0$ for all n, we have

$$
(\rho-\epsilon) a_{N}<a_{N+1}<(\rho+\epsilon) a_{N} .
$$

We claim that

$$
(\rho-\epsilon)^{k} a_{N}<a_{N+k}<(\rho+\epsilon)^{k} a_{N} \text { for all } k \geq 1 .
$$

The $k=1$ case is already done above. Assume that the claim is true for some $k \geq 1$. Then from Equation 1 we have for $n=N+k$,

$$
(\rho-\epsilon) a_{N+k}<a_{N+k+1}<(\rho+\epsilon) a_{N+k} .
$$

Now using the induction hypothesis on a_{N+k}, we get

$$
(\rho-\epsilon)^{k+1} a_{N}<a_{N+k+1}<(\rho+\epsilon)^{k+1} a_{N} .
$$

This is of the claimed form and this proves the claim. We showed that, for this given $\epsilon>0$, there exists an index N such that, for all $k \geq 1$ we have

$$
\rho-\epsilon<\left(\frac{a_{N+k}}{a_{N}}\right)^{\frac{1}{k}}<\rho+\epsilon .
$$

This shows that

$$
\lim _{k \rightarrow \infty}\left(\frac{a_{N+k}}{a_{N}}\right)^{\frac{1}{k}}=\rho
$$

Since

$$
\lim _{k \rightarrow \infty}\left(a_{N}\right)^{\frac{1}{k}}=1 \text { and } \lim _{k \rightarrow \infty}\left(\frac{k}{N+k}\right)=1
$$

We have

$$
\lim _{k \rightarrow \infty}\left(a_{N+k}\right)^{\frac{1}{N+k}}=\lim _{k \rightarrow \infty}\left[\left(a_{N+k}\right)^{\frac{1}{k}}\right]^{\frac{k}{N+k}}=\rho
$$

Or, by setting $n=N+k$, we have as required

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho
$$

Case-2: $\rho=0$.
This case is exactly similar, and in fact easier than the first case. Simply replace $(\rho-\epsilon)$ by 0 in the above arguments and all else works fine.

Q-2) Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows.

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

(i) Sketch the graph of $y=f(x)$.
(ii) Show that $f^{(n)}(0)=0$ for all $n=0,1,2, \ldots$.
(iii) Show that f is C^{∞} but is not analytic at the origin.

Solution:

We first attack the second part.
Observe that $f^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}$ when $x \neq 0$. To calculate the derivative at $x=0$, we calculate the limit

$$
\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}-0}{x-0}=\lim _{t \rightarrow \infty} \frac{t}{e^{t^{2}}}=0
$$

where we used L'Hopital's rule to get the last limit.
Next we claim that

$$
f^{(n)}(x)=P_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}} \text { for } x \neq 0, \text { and } f^{(n)}(0)=0
$$

for all $n \geq 1$, where $P_{n}(t)$ is a polynomial in t.
Note that the $n=1$ case is already proved above. Assume for $n-1$ and check for n.
That the form of the n-th derivative when $x \neq 0$ is straightforward differentiation. To calculate the n-th derivative of f at $x=0$ we need to calculate

$$
\lim _{x \rightarrow 0} \frac{f^{(n-1)}(x)-0}{x-0}=\lim _{x \rightarrow 0} \frac{P_{n-1}\left(\frac{1}{x}\right) e^{-1 / x^{2}}}{x}=\lim _{t \rightarrow \infty} \frac{t P_{n-1}(t)}{e^{t^{2}}}=0,
$$

where we used repeatedly the L'Hopital's rule to get the last limit.
This proves the (ii) part.
For the (iii) part, observe that the Taylor series of f at $x=0$ is written as

$$
f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)=\left(2!^{2}\right.}{x}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots \equiv 0,
$$

whereas the function is not identically equal to zero. hence the taylor series of the function at $x=0$ does not converge to the function in any neighborhood of $x=0$. This means the function is not analytic at the origin.

Finally we return to the first part. The derivative of the function is $f^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}$ when $x \neq 0$. Then the function is decreasing for $x<0$ and increasing for $x>0$ with an absolute minimum at $x=0$. The second derivative vanished and changes sign when $x= \pm \sqrt{2 / 3}$, which then gives concavity information.

Here is the graph:

Q-3) Let $f:[1, \infty) \rightarrow \mathbb{R}$ be an increasing function.
(i) Show that

$$
f(1)+\cdots+f(n-1)<\int_{1}^{n} f(x) d x<f(2)+\cdots+f(n) .
$$

(ii) Choosing a suitable f, show that $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}$.
(iii) Does the series $\sum_{n=1}^{\infty} \frac{e^{n} n!}{n^{n}}$ converge?
(iv) Does the series $\sum_{n=1}^{\infty} \frac{n^{n}}{e^{n} n!}$ converge?

Solution:

The (i) part is straightforward using Riemann sums.
(ii) Let $f(x)=\ln x$. Then $\int_{1}^{n} \ln x d x=\left(x \ln x-\left.x\right|_{1} ^{n}\right)=n \ln n-(n-1)=\ln \frac{n^{n}}{e^{n-1}}$. Putting this into (i) we get

$$
\ln (n-1)!<\ln \frac{n^{n}}{e^{n-1}}<\ln n!
$$

or equivalently

$$
\begin{equation*}
(n-1)!<\frac{n^{n}}{e^{n-1}}<n! \tag{2}
\end{equation*}
$$

Putting $n+1$ for the left side inequality in this equation we obtain

$$
n!<\frac{(n+1)^{n+1}}{e^{n}}
$$

Combining with the right inequality in Equation 2 we get

$$
\frac{n^{n}}{e^{n-1}}<n!<\frac{(n+1)^{n+1}}{e^{n}}
$$

Dividing all sides by n^{n} we get

$$
\begin{equation*}
\frac{e}{e^{n}}<\frac{n!}{n^{n}}<\frac{n+1}{e^{n}}\left(1+\frac{1}{n}\right)^{n} \tag{3}
\end{equation*}
$$

Take the n-th root of all sides to obtain

$$
\frac{e^{1 / n}}{e}<\frac{\sqrt[n]{n!}}{n}<\frac{(n+1)^{1 / n}}{e}\left(1+\frac{1}{n}\right)
$$

Taking limits of all sides as n goes to infinity we find

$$
\frac{1}{e} \leq \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n} \leq \frac{1}{e}
$$

which is the required result.
Here is another idea due to Murat Can: Let $a_{n}=\frac{n!}{n^{n}}$. Apply ratio test to check the convergence of the series $\sum a_{n}$.

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{(n+1)!}{(n+1)^{n+1}} \frac{n^{n}}{n!} \\
& =\frac{1}{(1+1 / n)^{n}} \\
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{1}{(1+1 / n)^{n}}=\frac{1}{e} .
\end{aligned}
$$

From question-1 we know that the root test will also give the same limit. Hence

$$
\lim _{n \rightarrow \infty}=\sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}
$$

(iii) Set $a_{n}=\frac{e^{n} n!}{n^{n}}$.

Multiply the left side inequality of equation 3 by e^{n} to get

$$
e<\frac{e^{n} n!}{n^{n}}=a_{n} .
$$

Hence $\sum a_{n}$ diverges since the general term is bounded away from 0 .
(iv) Set $a_{n}=\frac{n^{n}}{e^{n} n!}$.

Take reciprocal of all sides of equation 3 and divide all sides by e^{n} to get

$$
\frac{1}{(n+1)(1+1 / n)^{n}}<\frac{n^{n}}{e^{n} n!}<\frac{1}{e}
$$

Since we have $(1+1 / n)^{n}<e$ for all n, we get

$$
\frac{1 / e}{n+1}<\frac{1}{(n+1)(1+1 / n)^{n}}<\frac{n^{n}}{e^{n} n!}=a_{n} .
$$

Now, the series $\sum a_{n}$ diverges by direct comparison with the divergent series $\sum(1 / e) /(n+1)$.
A note on (iii) and (iv): Let $a_{n}=\frac{e^{n} n!}{n^{n}}$. The Stirling formula says

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}=1
$$

which is equivalent to writing

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt{2 \pi n}}=1
$$

which in turn implies that

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

Q-4) Find the sum $1-\frac{1}{4}+\frac{1}{7}-\frac{1}{10}+\cdots+\frac{(-1)^{n}}{1+3 n}+\cdots$.

Solution:

Let $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{1+3 n}}{1+3 n}$ for $-1<x \leq 1$.
Then

$$
f^{\prime}(x)=\sum_{n=0}^{\infty}(-1)^{n}\left(x^{3}\right)^{n}=\frac{1}{1+x^{3}}=\frac{1}{3(x+1)}-\frac{x-2}{3\left(x^{2}-x+1\right)},
$$

which we can write as

$$
f^{\prime}(x)=\frac{1}{3} \frac{1}{x+1}-\frac{1}{6} \frac{2 x-1}{x^{2}-x+1}+\frac{2}{3} \frac{1}{\left(\frac{2 x-1}{\sqrt{3}}\right)^{2}+1}
$$

Integrating from 0 to x we find, since $f(0)=0$,

$$
f(x)=\frac{1}{3} \ln (1+x)-\frac{1}{6} \ln \left(x^{2}-2 x+1\right)+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}}+\frac{\pi}{6 \sqrt{3}} .
$$

Finaly, the sum we want to calculate is

$$
f(1)=\frac{1}{3} \ln 2+\frac{\pi}{3 \sqrt{3}} \approx 0.83564884 \ldots .
$$

