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Math 114 Calculus – Homework 1 – Solutions

1 2 3 4 TOTAL

25 25 25 25 100

Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in
reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Assume that each an > 0 and lim
n→∞

an+1

an
= ρ. Show that lim

n→∞
n
√
an = ρ.

Solution:

Case-1: ρ > 0.

Let ϵ > 0 be chosen arbitrarily such that 0 < ϵ < ρ. Since lim
n→∞

an+1

an
= ρ, there exists an index N

such that
ρ− ϵ <

an+1

an
< ρ+ ϵ, for all n ≥ N. (1)

In particular, since an > 0 for all n, we have

(ρ− ϵ)aN < aN+1 < (ρ+ ϵ)aN .

We claim that
(ρ− ϵ)kaN < aN+k < (ρ+ ϵ)kaN for all k ≥ 1.

The k = 1 case is already done above. Assume that the claim is true for some k ≥ 1. Then from
Equation 1 we have for n = N + k,

(ρ− ϵ)aN+k < aN+k+1 < (ρ+ ϵ)aN+k.

Now using the induction hypothesis on aN+k, we get

(ρ− ϵ)k+1aN < aN+k+1 < (ρ+ ϵ)k+1aN .

This is of the claimed form and this proves the claim. We showed that, for this given ϵ > 0, there
exists an index N such that, for all k ≥ 1 we have

ρ− ϵ <

(
aN+k

aN

) 1
k

< ρ+ ϵ.

This shows that

lim
k→∞

(
aN+k

aN

) 1
k

= ρ.

Since

lim
k→∞

(aN)
1
k = 1 and lim

k→∞

(
k

N + k

)
= 1,



We have

lim
k→∞

(aN+k)
1

N+k = lim
k→∞

[
(aN+k)

1
k

] k
N+k

= ρ.

Or, by setting n = N + k, we have as required

lim
n→∞

n
√
an = ρ.

Case-2: ρ = 0.

This case is exactly similar, and in fact easier than the first case. Simply replace (ρ − ϵ) by 0 in the
above arguments and all else works fine.
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Q-2) Define a function f : R → R as follows.

f(x) =

{
e−1/x2

x ̸= 0

0 x = 0.

(i) Sketch the graph of y = f(x).
(ii) Show that f (n)(0) = 0 for all n = 0, 1, 2, . . . .
(iii) Show that f is C∞ but is not analytic at the origin.

Solution:

We first attack the second part.

Observe that f ′(x) =
2

x3
e−1/x2

when x ̸= 0. To calculate the derivative at x = 0, we calculate the
limit

lim
x→0

e−1/x2 − 0

x− 0
= lim

t→∞

t

et2
= 0,

where we used L’Hopital’s rule to get the last limit.

Next we claim that
f (n)(x) = Pn(

1

x
)e−1/x2

for x ̸= 0, and f (n)(0) = 0,

for all n ≥ 1, where Pn(t) is a polynomial in t.

Note that the n = 1 case is already proved above. Assume for n− 1 and check for n.

That the form of the n-th derivative when x ̸= 0 is straightforward differentiation. To calculate the
n-th derivative of f at x = 0 we need to calculate

lim
x→0

f (n−1)(x)− 0

x− 0
= lim

x→0

Pn−1(
1
x
)e−1/x2

x
= lim

t→∞

tPn−1(t)

et2
= 0,

where we used repeatedly the L’Hopital’s rule to get the last limit.

This proves the (ii) part.

For the (iii) part, observe that the Taylor series of f at x = 0 is written as

f(0) + f ′(0)x+
f ′′(0) = (2!

x

2

+ · · ·+ f (n)(0)

n!
xn + · · · ≡ 0,

whereas the function is not identically equal to zero. hence the taylor series of the function at x = 0
does not converge to the function in any neighborhood of x = 0. This means the function is not
analytic at the origin.

Finally we return to the first part. The derivative of the function is f ′(x) =
2

x3
e−1/x2

when x ̸= 0.
Then the function is decreasing for x < 0 and increasing for x > 0 with an absolute minimum
at x = 0. The second derivative vanished and changes sign when x = ±

√
2/3, which then gives

concavity information.
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Q-3) Let f : [1,∞) → R be an increasing function.
(i) Show that

f(1) + · · ·+ f(n− 1) <

∫ n

1

f(x) dx < f(2) + · · ·+ f(n).

(ii) Choosing a suitable f , show that lim
n→∞

n
√
n!

n
=

1

e
.

(iii) Does the series
∞∑
n=1

enn!

nn
converge?

(iv) Does the series
∞∑
n=1

nn

enn!
converge?

Solution:

The (i) part is straightforward using Riemann sums.

(ii) Let f(x) = lnx. Then
∫ n

1

lnx dx =
(
x ln x− x

∣∣∣n
1

)
= n lnn − (n − 1) = ln

nn

en−1
. Putting this

into (i) we get

ln(n− 1)! < ln
nn

en−1
< lnn!

or equivalently

(n− 1)! <
nn

en−1
< n!. (2)

Putting n+ 1 for the left side inequality in this equation we obtain

n! <
(n+ 1)n+1

en
.

Combining with the right inequality in Equation 2 we get

nn

en−1
< n! <

(n+ 1)n+1

en
.

Dividing all sides by nn we get

e

en
<

n!

nn
<

n+ 1

en

(
1 +

1

n

)n

. (3)

Take the n-th root of all sides to obtain
e1/n

e
<

n
√
n!

n
<

(n+ 1)1/n

e

(
1 +

1

n

)
.

Taking limits of all sides as n goes to infinity we find

1

e
≤ lim

n→∞

n
√
n!

n
≤ 1

e
,

which is the required result.

Here is another idea due to Murat Can: Let an =
n!

nn
. Apply ratio test to check the convergence of

the series
∑

an.

an+1

an
=

(n+ 1)!

(n+ 1)n+1

nn

n!

=
1

(1 + 1/n)n

lim
n→∞

an+1

an
= lim

n→∞

1

(1 + 1/n)n
=

1

e
.



From question-1 we know that the root test will also give the same limit. Hence

lim
n→∞

= n
√
an = lim

n→∞

n
√
n!

n
=

1

e
.

(iii) Set an =
enn!

nn
.

Multiply the left side inequality of equation 3 by ento get

e <
enn!

nn
= an.

Hence
∑

an diverges since the general term is bounded away from 0.

(iv) Set an =
nn

enn!
.

Take reciprocal of all sides of equation 3 and divide all sides by en to get

1

(n+ 1)(1 + 1/n)n
<

nn

enn!
<

1

e
.

Since we have (1 + 1/n)n < e for all n, we get

1/e

n+ 1
<

1

(n+ 1)(1 + 1/n)n
<

nn

enn!
= an.

Now, the series
∑

an diverges by direct comparison with the divergent series
∑

(1/e)/(n+ 1).

A note on (iii) and (iv): Let an =
enn!

nn
. The Stirling formula says

lim
n→∞

n!√
2πn

(
n
e

)n = 1,

which is equivalent to writing
lim
n→∞

an√
2πn

= 1,

which in turn implies that
lim
n→∞

an = ∞.
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Q-4) Find the sum 1− 1

4
+

1

7
− 1

10
+ · · ·+ (−1)n

1 + 3n
+ · · · .

Solution:

Let f(x) =
∞∑
n=0

(−1)n
x1+3n

1 + 3n
for −1 < x ≤ 1.

Then

f ′(x) =
∞∑
n=0

(−1)n(x3)n =
1

1 + x3
=

1

3(x+ 1)
− x− 2

3(x2 − x+ 1)
,

which we can write as

f ′(x) =
1

3

1

x+ 1
− 1

6

2x− 1

x2 − x+ 1
+

2

3

1(
2x−1√

3

)2

+ 1
.

Integrating from 0 to x we find, since f(0) = 0,

f(x) =
1

3
ln(1 + x)− 1

6
ln(x2 − 2x+ 1) +

1√
3
arctan

2x− 1√
3

+
π

6
√
3
.

Finaly, the sum we want to calculate is

f(1) =
1

3
ln 2 +

π

3
√
3
≈ 0.83564884 . . . .


