NAME:....

Ali Sinan Sertöz

STUDENT NO:....

Math 114 Calculus – Homework 1

[1	2	3	4	TOTAL
ſ	25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Assume that each $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho$. Show that $\lim_{n \to \infty} \sqrt[n]{a_n} = \rho$.

NAME:

Q-2) Define a function $f : \mathbb{R} \to \mathbb{R}$ as follows.

$$f(x) = \begin{cases} e^{-1/x^2} & x \neq 0\\ 0 & x = 0. \end{cases}$$

- (i) Sketch the graph of y = f(x).
 (ii) Show that f⁽ⁿ⁾(0) = 0 for all n = 0, 1, 2,
 (iii) Show that f is C[∞] but is not analytic at the origin.

STUDENT NO:

Q-3) Let $f:[1,\infty) \to \mathbb{R}$ be an increasing function.

(i) Show that

$$f(1) + \dots + f(n-1) < \int_{1}^{n} f(x) \, dx < f(2) + \dots + f(n).$$

(ii) Choosing a suitable f, show that $\lim_{n \to \infty} \frac{\nabla n!}{n} = \frac{1}{e}$.

(iii) Does the series
$$\sum_{n=1}^{\infty} \frac{e^{-n!}}{n^n}$$
 converge?
(iv) Does the series $\sum_{n=1}^{\infty} \frac{n^n}{e^n n!}$ converge?

NAME:

Q-4) Find the sum $1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \dots + \frac{(-1)^n}{1+3n} + \dots$