Due Date: May 2, 2011 Monday

NAME:....

Ali Sinan Sertöz

STUDENT NO:

Math 114 Calculus – Homework 3

1	2	TOTAL
50	50	100

Please do not write anything inside the above boxes!

Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

NAME:

STUDENT NO:

Q-1) Let C be a piecewise smooth curve in the xy-plane that does not pass through the origin. Let $\theta = \theta(x, y)$ be the polar angle coordinate of the point P = (x, y) on C, not restricted to an interval of length 2π , but varying continuously as P moves from one end of C to the other end.

(a) Show that
$$\nabla \theta = -\frac{y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$$
.
(b) Show that $\frac{1}{2\pi} \oint_C \frac{x \, dy - y \, dx}{x^2 + y^2}$ is always an integer when *C* is a closed curve.

Solution:

STUDENT NO:

Q-2) A smooth surface S is given parametrically by

$$\mathbf{r} = (\cos 2u)(2 + v\cos u)\mathbf{i} + (\sin 2u)(2 + v\cos u)\mathbf{j} + v\sin u\mathbf{k}$$

where $0 \le u \le 2\pi$ and $-1 \le v \le 1$.

Show that for *every* smooth vector field \mathbf{F} on S,

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS = 0,$$

where N = N(u, v) is a unit normal vector field on S that depends continuously on (u, v).

Solution: