\qquad

Ali Sinan Sertöz

STUDENT NO:

\qquad

Math 114 Calculus - Homework 3

1	2	TOTAL
50	50	100

Please do not write anything inside the above boxes!
Check that there are 2 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Let C be a piecewise smooth curve in the $x y$-plane that does not pass through the origin. Let $\theta=\theta(x, y)$ be the polar angle coordinate of the point $P=(x, y)$ on C, not restricted to an interval of length 2π, but varying continuously as P moves from one end of C to the other end.
(a) Show that $\nabla \theta=-\frac{y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}$.
(b) Show that $\frac{1}{2 \pi} \oint_{C} \frac{x d y-y d x}{x^{2}+y^{2}}$ is always an integer when C is a closed curve.

Solution:

Q-2) A smooth surface S is given parametrically by

$$
\mathbf{r}=(\cos 2 u)(2+v \cos u) \mathbf{i}+(\sin 2 u)(2+v \cos u) \mathbf{j}+v \sin u \mathbf{k}
$$

where $0 \leq u \leq 2 \pi$ and $-1 \leq v \leq 1$.
Show that for every smooth vector field \mathbf{F} on S,

$$
\iint_{S} \mathbf{F} \cdot \mathbf{N} d S=0
$$

where $\mathbf{N}=\mathbf{N}(u, v)$ is a unit normal vector field on S that depends continuously on (u, v).

Solution:

