\qquad

Math 114 Calculus II - Make-Up Exam - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Also note that if you write down something which you don't believe yourself, the chances are that I will not believe it either.

Q-1) Check if the following series converge or diverge:
a) $\sum_{n=1}^{\infty} \frac{n^{n}}{e^{n} n!} \quad$ and
b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{e^{n} n!}$.

Hint: Stirling's formula says $\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}=1$.

Solution:

Let $a_{n}=\frac{n^{n}}{e^{n} n!}$. Then $a_{n+1}=a_{n} \frac{\left(1+\frac{1}{n}\right)^{n}}{e}<a_{n}$, so a_{n} is strictly decreasing.
Rewrite Stirling's formula as $\lim _{n \rightarrow \infty} \frac{\sqrt{2 \pi n} n^{n}}{e^{n} n!}=1$. Let $\epsilon=1 / 2$. For this ϵ there exists an index N such that for every $n \geq N$, we have

$$
\frac{1}{2}=1-\epsilon<\frac{\sqrt{2 \pi n} n^{n}}{e^{n} n!}<1+\epsilon=\frac{3}{2}
$$

or equivalently

$$
\frac{1}{2 \sqrt{2 \pi}} \frac{1}{n^{1 / 2}}<a_{n}<\frac{3}{2 \sqrt{2 \pi}} \frac{1}{n^{1 / 2}}
$$

This shows that $\lim _{n \rightarrow \infty} a_{n}=0$. Hence

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{e^{n} n!}
$$

converges by the alternating series test. But comparing a_{n} by $1 / n^{1 / 2}$, we see that

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{e^{n} n!}
$$

diverges.

Q-2) Evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left(-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$ and C is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ traversed counterclockwise, where we take $a>0$ and $b>0$.

Solution:

Let $F=(M, N)$. Observe that $M_{y}=N_{x}$. So if C^{\prime} is a circle of radius R centered at the origin with $0<R<\min \{a, b\}$, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r},
$$

which follows from Green's theorem.
Now parametrizing C^{\prime} as $\mathbf{r}(t)=(R \cos t, R \sin t)$ and substituting in, we find that $\mathbf{F} \cdot d \mathbf{r}=d t$. Hence the integral becomes 2π.

Q-3) Write the equation of the tangent plane to the surface

$$
x^{2}+3 x y z+\ln \frac{z^{2}+1}{10}+\cos (x y \pi)=20
$$

at the point $(1,2,3)$.

Solution:

Let $f=x^{2}+3 x y z+\ln \frac{z^{2}+1}{10}+\cos (x y \pi)-20$.
$\nabla f=\left(2 x+3 y z-y \pi \sin (x y \pi), 3 x z-x \pi \sin (x y \pi), 3 x y+\frac{2 z}{z^{2}+1}\right)$.
$\nabla f(1,2,3)=\left(20,9, \frac{33}{5}\right)$.
Equation of the plane is $\nabla f(1,2,3) \cdot(x-1, y-2, z-3)=0$, or

$$
20 x+9 y+\frac{33}{5} z=\frac{289}{5}
$$

or

$$
100 x+45 y+33 z=289 .
$$

Q-4) Find the surface area of the part of the cone $2 \sqrt{x^{2}+y^{2}}=z, z \geq 0$, that lies over the disc D where D is in the $x y$-plane with center at $(1,0)$ and radius 1 .
Hint: $d \sigma=\frac{|\nabla f|}{|\nabla f \cdot k|} d A=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v$.

Solution:

Let $f(x, y, z)=4 x^{2}+4 y^{2}-z^{2}$. Then $|\nabla f|=2 \sqrt{5} z,|\nabla f \cdot k|=2 z$ and $d \sigma=\sqrt{5} d A$. Hence integrating this over D we get $\sqrt{5} \operatorname{Area}(D)=\sqrt{5} \pi$.

If you parametrize the cone with $\vec{r}(u, v)=(u \cos v, u \sin v, 2 u)$ with $-\pi / 2 \leq v \leq \pi / 2$ and $0 \leq u \leq$ $2 \cos v$, then $d \sigma=\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v=\sqrt{5} u d u d v$. We again get

$$
\sqrt{5} \int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos v} u d u d v=\sqrt{5} \pi
$$

STUDENT NO:

Q-5) Let $a, b, c>0$ and D be the ellipsoidal ball $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$. Evaluate the integral

$$
\iiint_{D} z^{2} d V
$$

Solution:

Change coordinates as $x=a u, y=b v$ and $z=c w$. Let B be the ball $u^{2}+v^{2}+w^{2} \leq 1$. Then

$$
\iiint_{D} z^{2} d V=a b c \iiint_{B}(c w)^{2} d V=a b c^{3} \iiint_{B} w^{2} d V
$$

Changing to spherical coordinates, we have $w=\rho \cos \phi, d V=\rho^{2} \sin \phi d \rho d \phi d \theta$ and

$$
\begin{aligned}
\iiint_{B} w^{2} d V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{4} \sin \phi \cos ^{2} \phi d \rho d \phi d \theta \\
& =(2 \pi)\left(\left.\frac{\rho^{5}}{5}\right|_{0} ^{1}\right)\left(-\left.\frac{\cos ^{3} \phi}{3}\right|_{0} ^{\pi}\right) \\
& =(2 \pi)\left(\frac{1}{5}\right)\left(\frac{2}{3}\right) \\
& =\frac{4 \pi}{15}
\end{aligned}
$$

hence

$$
\iiint_{D} z^{2} d V=\frac{4 \pi}{15} a b c^{3}
$$

