NAME:....

Date: 24 May 2011, Tuesday Time: 10:00-12:00 Ali Sinan Sertöz

STUDENT NO:.....

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Math 114 Calculus II – Make-Up Exam – Solutions

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. **Write your name on top of every page.** Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit. **Also note that** if you write down something which you don't believe yourself, the chances are that I will not believe it either.

Q-1) Check if the following series converge or diverge:

a)
$$\sum_{n=1}^{\infty} \frac{n^n}{e^n n!}$$
 and **b**) $\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{e^n n!}$
Stirling's formula says $\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$

Solution:

Hint:

Let
$$a_n = \frac{n^n}{e^n n!}$$
. Then $a_{n+1} = a_n \frac{\left(1 + \frac{1}{n}\right)^n}{e} < a_n$, so a_n is strictly decreasing.

Rewrite Stirling's formula as $\lim_{n\to\infty} \frac{\sqrt{2\pi n} n^n}{e^n n!} = 1$. Let $\epsilon = 1/2$. For this ϵ there exists an index N such that for every $n \ge N$, we have

$$\frac{1}{2} = 1 - \epsilon < \frac{\sqrt{2\pi n} \, n^n}{e^n \, n!} < 1 + \epsilon = \frac{3}{2}$$

or equivalently

$$\frac{1}{2\sqrt{2\pi}} \frac{1}{n^{1/2}} < a_n < \frac{3}{2\sqrt{2\pi}} \frac{1}{n^{1/2}}.$$

This shows that $\lim_{n \to \infty} a_n = 0$. Hence

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{e^n \, n!}$$

converges by the alternating series test. But comparing a_n by $1/n^{1/2}$, we see that

$$\sum_{n=1}^{\infty} \frac{n^n}{e^n \, n!}$$

diverges.

NAME:

STUDENT NO:

Q-2) Evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$ and C is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ traversed counterclockwise, where we take a > 0 and b > 0.

Solution:

Let F = (M, N). Observe that $M_y = N_x$. So if C' is a circle of radius R centered at the origin with $0 < R < \min\{a, b\}$, then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C'} \mathbf{F} \cdot d\mathbf{r},$$

which follows from Green's theorem.

Now parametrizing C' as $\mathbf{r}(t) = (R \cos t, R \sin t)$ and substituting in, we find that $\mathbf{F} \cdot d\mathbf{r} = dt$. Hence the integral becomes 2π .

STUDENT NO:

NAME:

Q-3) Write the equation of the tangent plane to the surface

$$x^{2} + 3xyz + \ln\frac{z^{2} + 1}{10} + \cos(xy\pi) = 20$$

at the point (1, 2, 3).

Solution:

Let $f = x^2 + 3xyz + \ln \frac{z^2 + 1}{10} + \cos(xy\pi) - 20.$ $\nabla f = \left(2x + 3yz - y\pi \sin(xy\pi), 3xz - x\pi \sin(xy\pi), 3xy + \frac{2z}{z^2 + 1}\right).$ $\nabla f(1, 2, 3) = \left(20, 9, \frac{33}{5}\right).$

Equation of the plane is $\nabla f(1,2,3) \cdot (x-1,y-2,z-3) = 0$, or

$$20x + 9y + \frac{33}{5}z = \frac{289}{5}$$

or

$$100x + 45y + 33z = 289.$$

STUDENT NO:

NAME:

Q-4) Find the surface area of the part of the cone $2\sqrt{x^2 + y^2} = z$, $z \ge 0$, that lies over the disc *D* where *D* is in the *xy*-plane with center at (1, 0) and radius 1.

Hint:
$$d\sigma = \frac{|\nabla f|}{|\nabla f \cdot k|} dA = |\vec{r}_u \times \vec{r}_v| du dv.$$

Solution:

Let $f(x, y, z) = 4x^2 + 4y^2 - z^2$. Then $|\nabla f| = 2\sqrt{5}z$, $|\nabla f \cdot k| = 2z$ and $d\sigma = \sqrt{5} dA$. Hence integrating this over D we get $\sqrt{5} Area(D) = \sqrt{5}\pi$.

If you parametrize the cone with $\vec{r}(u, v) = (u \cos v, u \sin v, 2u)$ with $-\pi/2 \le v \le \pi/2$ and $0 \le u \le 2 \cos v$, then $d\sigma = |\vec{r}_u \times \vec{r}_v| du dv = \sqrt{5} u du dv$. We again get

$$\sqrt{5} \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos v} u \, du dv = \sqrt{5} \, \pi.$$

NAME:

STUDENT NO:

Q-5) Let a, b, c > 0 and D be the ellipsoidal ball $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$. Evaluate the integral $\iiint_D z^2 dV$.

Solution:

Change coordinates as x = au, y = bv and z = cw. Let B be the ball $u^2 + v^2 + w^2 \le 1$. Then

$$\iiint_D z^2 \, dV = abc \iiint_B (cw)^2 \, dV = abc^3 \iiint_B w^2 \, dV.$$

Changing to spherical coordinates, we have $w = \rho \cos \phi$, $dV = \rho^2 \sin \phi \, d\rho d\phi d\theta$ and

$$\iiint_{B} w^{2} dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{4} \sin \phi \cos^{2} \phi \, d\rho d\phi d\theta$$
$$= (2\pi) \left(\frac{\rho^{5}}{5} \Big|_{0}^{1} \right) \left(-\frac{\cos^{3} \phi}{3} \Big|_{0}^{\pi} \right)$$
$$= (2\pi) (\frac{1}{5}) (\frac{2}{3})$$
$$= \frac{4\pi}{15}.$$

hence

$$\iiint_D z^2 \, dV = \frac{4\pi}{15} abc^3.$$