\qquad
\qquad

Math 114 Calculus - Homework 1 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1)

i. Let $a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n$. Find, if it exists, $\lim _{n \rightarrow \infty} a_{n}$.
ii. Let $a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}-\cdots-\frac{1}{n^{2}}$. Find, if it exists, $\lim _{n \rightarrow \infty} a_{n}$.

Solution on next page:

Figure 1: Comparing areas of boxes with $\ln x$.
i. From Figure $1-\mathrm{a}$, we see that the sum of the areas of the boxes on the interval $[1, n+1]$ is larger than the total area under the curve $y=1 / x$ from $x=1$ to $x=n+1$. This gives

$$
\ln (n+1)<1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

From Figure 1-b, we see that the sum of the areas of the boxes on the interval $[1, n]$ is smaller than the total area under the curve $y=1 / x$ from $x=1$ to $x=n$. This gives

$$
\frac{1}{2}+\cdots+\frac{1}{n}<\ln n
$$

Putting these two inequalities together, we find

$$
\ln (n+1)<1+\frac{1}{2}+\cdots+\frac{1}{n}<1+\ln n
$$

Subtracting $\ln n$ from all sides we find

$$
0<\ln (n+1)-\ln n<1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n=a_{n}<1
$$

which shows that the sequence a_{n} is bounded.

Figure 2: Comparing one box with $\ln x$.

We now claim that the sequence decreases. For this observe that

$$
a_{n}-a_{n+1}=(\ln (n+1)-\ln n)-\frac{1}{n+1} .
$$

From Figure 2, we see that the area under the curve $y=1 / x$, from $x=n$ to $x=n+1$, is larger than the area of the box, which is $1 /(n+1)$. This means that

$$
a_{n}-a_{n+1}=(\ln (n+1)-\ln n)-\frac{1}{n+1}>0
$$

hence a_{n} decreases.
Since every decreasing sequence which is bounded from below converges, the limit of a_{n} as n goes to infinity exists. This limit value has a special name. It is called the Euler constant, or the EulerMascheroni constant. It is customary to denote this limit by γ.

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n\right)=\gamma=0.5772156649 \ldots
$$

It is not known yet whether γ is a rational number or not!
ii. Let $H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$. From the first part, we know that

$$
\lim _{n \rightarrow \infty}\left(H_{n}-\ln n\right)=\gamma, \quad \text { or equivalently } \quad \lim _{n \rightarrow \infty}\left(H_{n^{2}}-\ln n^{2}\right)=\gamma
$$

Now we observe that

$$
\begin{aligned}
a_{n} & =1+\frac{1}{2}+\cdots+\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+2}-\cdots-\frac{1}{n^{2}} \\
& =H_{n}-\left(H_{n^{2}}-H_{n}\right) \\
& =2 H_{n}-H_{n^{2}} \\
& =2\left(H_{n}-\ln n\right)-\left(H_{n^{2}}-\ln n^{2}\right) \\
& \rightarrow 2 \gamma-\gamma=\gamma \text { as } n \rightarrow \infty .
\end{aligned}
$$

This new property of γ is due to J. J. Mačys, The American Mathematical Monthly, Volume 119, No: 1, page 82, year 2012.

Q-2) Let $\alpha \geq 0$ be any non-negative real number. Define a sequence a_{n} recursively as follows.

$$
a_{1}=\alpha, a_{n+1}=\sqrt{1+2 a_{n}} \text { for } n \geq 1
$$

For which values of α does the sequence a_{n} converge? Find $\lim _{n \rightarrow \infty} a_{n}$ when it exists.

Solution:

First assume that $\lim _{n \rightarrow \infty} a_{n}$ exists. Denote the limit by L. Then by taking the limit of both sides of the recursive relation $a_{n+1}=\sqrt{1+2 a_{n}}$ as n goes to infinity, we find that

$$
L=\sqrt{1+2 L}, \quad \text { or } \quad L=1+\sqrt{2} .
$$

This shows that if the limit exists, then it is $1+\sqrt{2}$. But does the limit exist?
We check if the sequence is increasing or decreasing. The sign of $a_{n+1}-a_{n}$ is the same as the sign of $a_{n+1}^{2}-a_{n}^{2}$. Using the recursive relation, we find that

$$
a_{n+1}^{2}-a_{n}^{2}=2\left(a_{n}-a_{n-1}\right), \text { for } n>1
$$

By induction, the sign of $a_{n+1}-a_{n}$ is the same as the sign of $a_{2}-a_{1}$, which in turn is the same as the sign of $a_{2}^{2}-a_{1}^{2}$. We find that

$$
a_{2}^{2}-a_{1}^{2}=1+2 \alpha-\alpha^{2}= \begin{cases}>0 & \text { for } 0 \leq \alpha<1+\sqrt{2} \\ =0 & \text { for } \alpha=1+\sqrt{2} \\ <0 & \text { for } \alpha>1+\sqrt{2}\end{cases}
$$

We examine these cases separately.
Case 1: $0 \leq \alpha<1+\sqrt{2}$.
In this case, as we showed above, the sequence a_{n} is increasing. We claim that each $a_{n}<1+\sqrt{2}$. Clearly $a_{1}=\alpha<1+\sqrt{2}$. Assume $a_{n}<1+\sqrt{2}$. Then

$$
a_{n+1}^{2}=1+2 a_{n}<1+2(1+\sqrt{2})=(1+\sqrt{2})^{2} .
$$

Thus $a_{n+1}<1+\sqrt{2}$, and this proves our claim.
We now know that a_{n} is an increasing sequence which is bounded from above, so the limit exists.
Case 2: $\alpha=1+\sqrt{2}$.
In this case $a_{n}=1+\sqrt{2}$ for all $n \geq 1$, so the limit exists.
Case 3: $\alpha>1+\sqrt{2}$.
In this case the sequence a_{n} is decreasing. We claim that each $a_{n}>1+\sqrt{2}$. Clearly $a_{1}=\alpha>1+\sqrt{2}$. Assume $a_{n}>1+\sqrt{2}$. Then

$$
a_{n+1}^{2}=1+2 a_{n}>1+2(1+\sqrt{2})=(1+\sqrt{2})^{2} .
$$

Thus $a_{n+1}>1+\sqrt{2}$, and this proves our claim.

We now know that a_{n} is an decreasing sequence which is bounded from below, so the limit exists.
We proved that for all $\alpha \geq 0$, the sequence a_{n} converges to $1+\sqrt{2}$.

Q-3)

i. For which values of $\alpha \in \mathbb{R}$ does the series $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\alpha}}$ converge?
ii. For which values of $\alpha \in \mathbb{R}$ does the series $\sum_{n=3}^{\infty} \frac{1}{n(\ln \ln n)^{\alpha}}$ converge?

Solution:

i. We observe that

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{(\ln n)^{\alpha}}}{\frac{1}{n}}=\infty, \text { for all } \alpha \in \mathbb{R}
$$

By limit comparison test, we conclude that $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\alpha}}$ diverges for all $\alpha \in \mathbb{R}$.
ii. We use integral test for this series. We have

$$
\int_{3}^{\infty} \frac{d x}{x(\ln \ln x)^{\alpha}}=\int_{\ln 3}^{\infty} \frac{d u}{(\ln u)^{\alpha}}
$$

But this last integral diverges by integral test where we compare it by the series in part (i). Hence $\sum_{n=3}^{\infty} \frac{1}{n(\ln \ln n)^{\alpha}}$ diverges for all α.

STUDENT NO:

Q-4)

i. Find $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}$. Let $a_{n}=\frac{n!}{n^{n}}$. Does the series $\sum_{n=1}^{\infty} a_{n}$ converge?
ii. Does the series $\sum_{n=1}^{\infty} \frac{1}{1+\frac{1}{2}+\cdots+\frac{1}{n}}$ converge?

Solution:

i. Since $\frac{n!}{n^{n}}=\frac{1}{n} \cdot \frac{2}{n} \cdots \frac{n}{n}<\frac{1}{n}$, we have $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$ by the sandwich theorem.

To check the convergence of the infinite sum, we use the ratio test.

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{1}{(1+1 / n)^{n}}=\frac{1}{e}<1,
$$

so the series converges.
ii. Let $a_{n}=\frac{1}{1+\frac{1}{2}+\cdots+\frac{1}{n}}$. Then observe that

$$
\frac{1}{a_{n}}=1+\frac{1}{2}+\cdots+\frac{1}{n}<1+1+\cdots+1=n,
$$

so that $a_{n}>\frac{1}{n}$, and the series $\sum_{n=1}^{\infty} a_{n}$ diverges by comparison with the harmonic series.

