\qquad
\qquad

Math 114 Calculus - Homework 3 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page.
Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.
Everything you write on your paper should be part of a well constructed sentence. No hanging equations will be read. No sequence of equations will be read unless they are part of a well constructed, meaningful sentence.

Q-1) Let $f(x, y)$ be a function defined in some open neighborhood of $\left(x_{0}, y_{0}\right)$. Assume that there exist constants A and B such that f satisfies one of the following conditions DIFF1 or DIFF2.

$$
\begin{gather*}
\lim _{(h, k) \rightarrow(0,0)} \frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-A h-B k}{\sqrt{h^{2}+k^{2}}}=0 . \tag{DIFF1}\\
f\left(x_{0}+h, y_{0}+k\right)=f\left(x_{0}, y_{0}\right)+A h+B k+\epsilon_{1} h+\epsilon_{2} k, \tag{DIFF2}
\end{gather*}
$$

where ϵ_{i} is a function of h and k such that $\lim _{(h, k) \rightarrow(0,0)} \epsilon_{i}=0, i=1,2$.
(i) Show that if f satisfies the condition DIFF1, then $f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)$ exist and $A=$ $f_{x}\left(x_{0}, y_{0}\right), B=f_{y}\left(x_{0}, y_{0}\right)$.
(ii) Show that if f satisfies the condition DIFF2, then $f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)$ exist and $A=$ $f_{x}\left(x_{0}, y_{0}\right), B=f_{y}\left(x_{0}, y_{0}\right)$.
(iii) Show that the conditions DIFF1 and DIFF2 are equivalent.

Remark: A function satisfying any of the equivalent conditions DIFF1 or DIFF2 is called differentiable at $\left(x_{0}, y_{0}\right)$.

Solution:

(i)

$$
\begin{aligned}
f_{x}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)-A h+A h}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)-A h}{h}+A\right) \\
& =\lim _{\substack{h, k) \rightarrow(0,0) \\
k=0}}\left(\frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-A h-B k}{\sqrt{h^{2}+k^{2}}}+A\right) \\
& =A .
\end{aligned}
$$

Similarly $f_{y}\left(x_{0}, y_{0}\right)=B$.
(ii)

$$
\begin{aligned}
f_{x}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{A h+\epsilon_{1}(h, 0) h}{h} \\
& =A+\lim _{h \rightarrow 0} \epsilon_{1}(h, 0) \\
& =A .
\end{aligned}
$$

Similarly $f_{y}\left(x_{0}, y_{0}\right)=B$.
(iii)
(DIFF1 \Rightarrow DIFF2)
Define a new function

$$
\epsilon(h, k)=\frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-A h-B k}{\sqrt{h^{2}+k^{2}}} \text { when }(h, k) \neq(0,0), \text { and } \epsilon(0,0)=0,
$$

where A and B are as in condition DIFF1. Also define a function of h and k simply as

$$
s= \begin{cases}+1 & \text { if } h k \geq 0 \\ -1 & \text { if } h k<0\end{cases}
$$

Finally consider the auxiliary function α defined as

$$
\alpha(t)=\sqrt{1+t^{2}}-t=\frac{1}{\sqrt{1+t^{2}}+t}, \text { for } t \geq 0
$$

Clearly $\alpha(t)>0$ and $\lim _{t \rightarrow \infty} \alpha(t)=0$. This shows that $\alpha(t)$ is bounded; there exists a number M such that

$$
0<\alpha(t) \leq M, \text { for } t \geq 0
$$

We now proceed to show that the condition DIFF2 holds. We claim that the ϵ_{1} and ϵ_{2} of DIFF2 are the following functions.

$$
\begin{aligned}
& \epsilon_{1}(h, k)=\epsilon(h, k) s, \\
& \epsilon_{2}(h, k)=\epsilon(h, k) \alpha(|h / k|), \text { if } k \neq 0, \\
& \epsilon_{2}(h, 0)=0 .
\end{aligned}
$$

Clearly it follows from DIFF1 that

$$
\lim _{(h, k) \rightarrow(0,0)} \epsilon_{1}(h, k)=0 .
$$

We also have, when $k \neq 0$,

$$
0 \leq\left|\epsilon_{2}(h, k)\right|=|\epsilon(h, k)||\alpha(|h / k|)| \leq M|\epsilon(h, k)| .
$$

It follows form the condition DIFF1 and the sandwich theorem that

$$
\lim _{(h, k) \rightarrow(0,0)} \epsilon_{2}(h, k)=0 .
$$

Observe that

$$
\epsilon(h, k) \sqrt{h^{2}+k^{2}}=\epsilon_{1}(h, k) h+\epsilon_{2}(h, k) k,
$$

which is precisely the condition DIFF2.
(DIFF2 \Rightarrow DIFF1)

$$
\begin{aligned}
\left|\frac{f\left(x_{0}+h, y_{0}+k\right)-f\left(x_{0}, y_{0}\right)-A h-B k}{\sqrt{h^{2}+k^{2}}}\right| & =\left|\frac{\epsilon_{1}(h, k) h+\epsilon_{2}(h, k) k}{\sqrt{h^{2}+k^{2}}}\right| \\
& \leq\left|\epsilon_{1}(h, k)\right| \frac{|h|}{\sqrt{h^{2}+k^{2}}}+\left|\epsilon_{2}(h, k)\right| \frac{|k|}{\sqrt{h^{2}+k^{2}}} \\
& \leq\left|\epsilon_{1}(h, k)\right|+\left|\epsilon_{2}(h, k)\right|
\end{aligned}
$$

which goes to zero as $(h, k) \rightarrow(0,0)$, giving us the condition DIFF1.

Q-2) Define

$$
f(x, y)= \begin{cases}\frac{y^{5}-x^{2} y}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(i) Show that f is continuous at $(0,0)$.
(ii) Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist.
(iii) Show that f is not differentiable at $(0,0)$.

Solution:

(i)
$\frac{y^{5}}{x^{2}+y^{4}}$ is continuous at the origin since $\frac{0}{2}+\frac{5}{4}>1$.
$\frac{x^{2} y}{x^{2}+y^{4}}$ is continuous at the origin since $\frac{2}{2}+\frac{1}{4}>1$.
Hence f, being the difference of two continuous functions, is continuous.
(ii)

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} \frac{0-0)}{x}=0 \\
& f_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=\lim _{x \rightarrow 0} \frac{y-0)}{y}=1 .
\end{aligned}
$$

(iii)

Let

$$
\phi(x, y)=\frac{f(x, y)-f(0,0)-0 \cdot x-1 \cdot y}{\sqrt{x^{2}+y^{2}}}=-2 \cdot \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}} .
$$

Then

$$
\lim _{x \rightarrow 0} \phi(x, \lambda x)=\frac{-2 \lambda}{\sqrt{1+\lambda^{2}}} .
$$

Since this limit depends on path, the general limit does not exist and the function f is not differentiable at the origin.

Q-3) Define

$$
g(x, y)= \begin{cases}\frac{y^{5}+x^{2} y}{x^{2}+y^{4}} & \text { if }(x, y) \neq 0 \\ 0 & \text { if }(x, y)=0\end{cases}
$$

(i) Show that g is continuous at $(0,0)$.
(ii) Show that $g_{x}(0,0)$ and $g_{y}(0,0)$ exist.
(iii) Show that g is differentiable at $(0,0)$.

Solution:

Here the function is $g(x, y)=y$ and the problem is trivial.

Q-4) Define

$$
h(x, y)= \begin{cases}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq 0 \\ 0 & \text { if }(x, y)=0\end{cases}
$$

(i) Find $h_{x}, h_{y}, h_{x y}, h_{y x}$ at points $(x, y) \neq(0,0)$.
(ii) Find $h_{x}, h_{y}, h_{x y}, h_{y x}$ at points $(x, y)=(0,0)$.
(iii) Did you get $h_{x y}(0,0)=h_{y x}(0,0)$? Explain why?.

Solution:

(i)

$$
\begin{aligned}
h_{x} & =\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \\
h_{x y} & =\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}}=h_{y x}=\frac{x\left(x^{4}-4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

(ii)

$$
h_{x}(0,0)=\lim _{x \rightarrow 0} \frac{h(x, 0)-h(0,0)}{x}=\lim _{x \rightarrow 0} \frac{0-0}{x}=0 .
$$

Similarly $h_{y}(0,0)=0$.

$$
\begin{gathered}
h_{x y}(0,0)=\lim _{y \rightarrow 0} \frac{h_{x}(0, y)-h_{x}(0,0)}{y}=\lim _{y \rightarrow 0} \frac{-y-0}{y}=-1 . \\
h_{y x}(0,0)=\lim _{x \rightarrow 0} \frac{h_{y}(0, y)-h_{y}(0,0)}{y}=\lim _{x \rightarrow 0} \frac{x-0}{x}=1 .
\end{gathered}
$$

(iii)

We did not get $h_{x y}(0,0)=h_{y x}(0,0)$. This is not surprising as $h_{x y}(x, y)$ is not continuous at the origin. This can be seen by observing that

$$
h_{x y}(x, \lambda x)=\frac{1+9 \lambda^{2}-9 \lambda^{4}-\lambda^{6}}{\left(1+\lambda^{2}\right)^{3}} .
$$

Hence the limit along different lines give different limits at the origin, from which we conclude that $h_{x y}$ is not continuous at the origin.

