\qquad
\qquad

Math 114 Calculus - Homework 4 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page.
Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.
Everything you write on your paper should be part of a well constructed sentence. No hanging equations will be read. No sequence of equations will be read unless they are part of a well constructed, meaningful sentence.

Q-1) Read Theorem 8 on page 731. Then examine Example 3 on page 738. Now show that the equation $\frac{1+x+y^{3}}{1+x^{3}+y^{4}}=1$ has a solution of the form $y=f(x)$ near $x=0$ satisfying $f(0)=1$, and find the terms up to fifth degree for the Taylor series for $f(x)$ in powers of x

Solution:

Set $F(x, y)=\frac{1+x+y^{3}}{1+x^{3}+y^{4}}-1$.
We check that $\frac{\partial F}{\partial y}(0,1)=-\frac{1}{2} \neq 0$, so y can be solved as $y=f(x)$ where f is an analytic function of x. Since $F(0,1)=0$, we must have $f(0)=1$. Thus the first few terms of the Taylor expansion of f around $x=0$ is

$$
f(x)=1+a x+b x^{2}+c x^{3}+d x^{4}+e x^{5}+\cdots .
$$

Note that $F(x, f(x))=0$ is equivalent to writing

$$
\left(1+x+f(x)^{3}\right)-\left(1+x^{3}+f(x)^{4}\right)=0 .
$$

Expanding this in powers of x we obtain

$$
\begin{aligned}
(1-a) x-\left(b+3 a^{2}\right) x^{2} & -\left(c+6 a b+3 a^{3}+1\right) x^{3}-\left(3 b^{2}+9 a^{2} b+6 a c+a^{4}\right) x^{4} \\
& -\left(6 b c+9 a b^{2}+e+9 a^{2} c+6 a d+4 a^{3} b\right) x^{5}+\cdots \equiv 0 .
\end{aligned}
$$

Hence all coefficients are zero. Solving for a, b, c, d, e, we find that

$$
y=1+x-3 x^{2}+14 x^{3}-85 x^{4}+567 x^{5}+\cdots
$$

Q-2) Let $f(x, y, z)=\left(x^{2}+y^{2}\right) \ln \left(1+y^{2}\right)+y z+x z^{3}$. Let P_{0} be the point $(1,0,2)$.
(i) Find the gradient of f at P_{0}.
(ii) Find the linearization of f at P_{0}.
(iii) Find the equation for the tangent plane at P_{0} to the level surface of f through P_{0}.
(iv) If a bird flies through P_{0} with speed 5 , heading directly toward the point $(2,-1,1)$, what is the rate of change of f as seen by the bird as it passes through P_{0} ?
(v) In what direction from P_{0} should the bird fly at speed 5 to experience the greatest rate of increase of f ?

Solution:

(i) $\nabla f=\left(2 x \ln \left(1+y^{2}\right)+z^{3}, 2 y \ln \left(1+y^{2}\right)+\left(x^{2}+y^{2}\right) \frac{2 y}{1+y^{2}}+z, y+3 x z^{2}\right)$. $\nabla f(1,0,2)=(8,2,12)$.
(ii) $L(x, y, z)=f(1,0,2)+\nabla f(1,0,2) \cdot(x-1, y-0, z-2)=8 x+2 y+12 z-24$.
(iii) Equation of the tangent plane is $\nabla f(1,0,2) \cdot(x-1, y-0, z-2)=0$, which simplifies to $8 x+2 y+12 z=32$.
(iv) Let $\vec{u}=(2,-1,1)-(1,0,2)=(1,-1,-1)$. Then $|\vec{u}|=\sqrt{3}$. The required rate of change is $5 D_{\vec{u}} f(1,0,2)=5 \nabla f(1,0,2) \cdot(1 / \sqrt{3},-1 / \sqrt{3},-1 / \sqrt{3})=10 \sqrt{3}$.
(v) The fastest rate of change is observed along the gradient $\nabla f(1,0,2)=(8,2,12)$.

Q-3) Find all local/global minimum and maximum points of $f(x, y)=x^{4}+24 y^{2}-4 x y^{3}$, if they exist. Also find any saddle points if they exist.

Solution:

First find the critical points. $f_{x}=0$ and $f_{y}=0$ give $(0,0),(2,2)$ and $(-2,-2)$ as critical points. The second derivative test immediately gives the points $(2,2)$ and $(-2,-2)$ as saddle points. The discriminant vanishes at $(0,0)$. Here we observe that

$$
f(x, y)-f(0,0)=x^{4}+4 y^{2}(6-x y)>0
$$

for $|x|,|y|<1$. So the origin is a local minimum point.
The function however is not bounded since $\lim _{x \rightarrow \infty} f(x, 0)=\infty$ and $\lim _{y \rightarrow \infty} f(1, y)=-\infty$. So there is no global minimum or maximum.

Q-4) Among all the ellipsoids of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

which pass through the point $(2,1,3)$, find the ones with the minimum and the maximum volumes, if they exist.

Solution:

The volume of this ellipsoid is $V(a, b, c)=\frac{4}{3} \pi a b c$, where we take $a, b, c>0$. The parameters a, b, c must satisfy the equation

$$
f(a, b, c)=\frac{4}{a^{2}}+\frac{1}{b^{2}}+\frac{9}{c^{2}}-1=0
$$

Notice that for $b=2$ and any large a, we can find $c>1$ so that the equation $f(a, 2, c)=0$ can be satisfied. But then $V(a, 2, c)>(8 \pi / 3) a$ and is unbounded as a increases. Thus there is no maximum but we can look for minimum.

For this we use Lagrange multipliers method. From $\nabla V=\lambda \nabla f$ we obtain

$$
\frac{a^{3} b c}{8}=\frac{a b^{3} c}{2}=\frac{a b c^{3}}{18}=-\lambda,
$$

from which we obtain

$$
a=2 b \text { and } c=3 b
$$

Putting these into $f(a, b, c)=0$, we get $b=\sqrt{3}$. Hence the global minimum occurs at the point $(a, b, c)=(2 \sqrt{3}, \sqrt{3}, 3 \sqrt{3})$ and then the ellipsoid with the maximum volume is

$$
\frac{x^{2}}{12}+\frac{y^{2}}{3}+\frac{z^{2}}{27}=1
$$

and has the volume

$$
V(2 \sqrt{3}, \sqrt{3}, 3 \sqrt{3})=24 \sqrt{3} \pi \approx 131
$$

