NAME:....

Ali Sinan Sertöz

STUDENT NO:....

Math 114 Calculus – Homework 4 – Solutions

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit. Everything you write on your paper should be part of a well constructed sentence. No hanging equations will be read. No sequence of equations will be read unless they are part of a well constructed, meaningful sentence. **Q-1)** Read Theorem 8 on page 731. Then examine Example 3 on page 738. Now show that the equation $\frac{1+x+y^3}{1+x^3+y^4} = 1$ has a solution of the form y = f(x) near x = 0 satisfying f(0) = 1, and find the terms up to fifth degree for the Taylor series for f(x) in powers of x

Solution:

Set $F(x,y) = \frac{1+x+y^3}{1+x^3+y^4} - 1.$

We check that $\frac{\partial F}{\partial y}(0,1) = -\frac{1}{2} \neq 0$, so y can be solved as y = f(x) where f is an analytic function of x. Since F(0,1) = 0, we must have f(0) = 1. Thus the first few terms of the Taylor expansion of f around x = 0 is

$$f(x) = 1 + ax + bx^{2} + cx^{3} + dx^{4} + ex^{5} + \cdots$$

Note that F(x, f(x)) = 0 is equivalent to writing

$$(1 + x + f(x)^3) - (1 + x^3 + f(x)^4) = 0.$$

Expanding this in powers of x we obtain

$$(1-a)x - (b+3a^2)x^2 - (c+6ab+3a^3+1)x^3 - (3b^2+9a^2b+6ac+a^4)x^4 - (6bc+9ab^2+e+9a^2c+6ad+4a^3b)x^5 + \dots \equiv 0.$$

Hence all coefficients are zero. Solving for a, b, c, d, e, we find that

$$y = 1 + x - 3x^2 + 14x^3 - 85x^4 + 567x^5 + \cdots$$

STUDENT NO:

Q-2) Let $f(x, y, z) = (x^2 + y^2) \ln(1 + y^2) + yz + xz^3$. Let P_0 be the point (1, 0, 2).

- (i) Find the gradient of f at P_0 .
- (ii) Find the linearization of f at P_0 .
- (iii) Find the equation for the tangent plane at P_0 to the level surface of f through P_0 .
- (iv) If a bird flies through P_0 with speed 5, heading directly toward the point (2, -1, 1), what is the rate of change of f as seen by the bird as it passes through P_0 ?
- (v) In what direction from P_0 should the bird fly at speed 5 to experience the greatest rate of increase of f?

Solution:

- (i) $\nabla f = (2x \ln(1+y^2) + z^3, 2y \ln(1+y^2) + (x^2+y^2) \frac{2y}{1+y^2} + z, y+3xz^2).$ $\nabla f(1,0,2) = (8,2,12).$
- (ii) $L(x, y, z) = f(1, 0, 2) + \nabla f(1, 0, 2) \cdot (x 1, y 0, z 2) = 8x + 2y + 12z 24.$
- (iii) Equation of the tangent plane is $\nabla f(1,0,2) \cdot (x-1,y-0,z-2) = 0$, which simplifies to 8x + 2y + 12z = 32.
- (iv) Let $\vec{u} = (2, -1, 1) (1, 0, 2) = (1, -1, -1)$. Then $|\vec{u}| = \sqrt{3}$. The required rate of change is $5D_{\vec{u}}f(1, 0, 2) = 5\nabla f(1, 0, 2) \cdot (1/\sqrt{3}, -1/\sqrt{3}, -1/\sqrt{3}) = 10\sqrt{3}$.
- (v) The fastest rate of change is observed along the gradient $\nabla f(1,0,2) = (8,2,12)$.

NAME:

STUDENT NO:

Q-3) Find all local/global minimum and maximum points of $f(x, y) = x^4 + 24y^2 - 4xy^3$, if they exist. Also find any saddle points if they exist.

Solution:

First find the critical points. $f_x = 0$ and $f_y = 0$ give (0,0), (2,2) and (-2,-2) as critical points. The second derivative test immediately gives the points (2,2) and (-2,-2) as saddle points. The discriminant vanishes at (0,0). Here we observe that

$$f(x,y) - f(0,0) = x^4 + 4y^2(6 - xy) > 0$$

for |x|, |y| < 1. So the origin is a local minimum point.

The function however is not bounded since $\lim_{x\to\infty} f(x,0) = \infty$ and $\lim_{y\to\infty} f(1,y) = -\infty$. So there is no global minimum or maximum.

STUDENT NO:

Q-4) Among all the ellipsoids of the form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

which pass through the point (2, 1, 3), find the ones with the minimum and the maximum volumes, if they exist.

Solution:

The volume of this ellipsoid is $V(a, b, c) = \frac{4}{3}\pi abc$, where we take a, b, c > 0. The parameters a, b, c must satisfy the equation

$$f(a, b, c) = \frac{4}{a^2} + \frac{1}{b^2} + \frac{9}{c^2} - 1 = 0.$$

Notice that for b = 2 and any large a, we can find c > 1 so that the equation f(a, 2, c) = 0 can be satisfied. But then $V(a, 2, c) > (8\pi/3)a$ and is unbounded as a increases. Thus there is no maximum but we can look for minimum.

For this we use Lagrange multipliers method. From $\nabla V = \lambda \nabla f$ we obtain

$$\frac{a^{3}bc}{8} = \frac{ab^{3}c}{2} = \frac{abc^{3}}{18} = -\lambda,$$

from which we obtain

$$a = 2b$$
 and $c = 3b$.

Putting these into f(a, b, c) = 0, we get $b = \sqrt{3}$. Hence the global minimum occurs at the point $(a, b, c) = (2\sqrt{3}, \sqrt{3}, 3\sqrt{3})$ and then the ellipsoid with the maximum volume is

$$\frac{x^2}{12} + \frac{y^2}{3} + \frac{z^2}{27} = 1$$

and has the volume

$$V(2\sqrt{3}, \sqrt{3}, 3\sqrt{3}) = 24\sqrt{3}\pi \approx 131.$$