\qquad
\qquad

Math 114 Calculus - Homework 4

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page.
Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.
Everything you write on your paper should be part of a well constructed sentence. No hanging equations will be read. No sequence of equations will be read unless they are part of a well constructed, meaningful sentence.

Q-1) Read Theorem 8 on page 731. Then examine Example 3 on page 738. Now show that the equation $\frac{1+x+y^{3}}{1+x^{3}+y^{4}}=1$ has a solution of the form $y=f(x)$ near $x=0$ satisfying $f(0)=1$, and find the terms up to fifth degree for the Taylor series for $f(x)$ in powers of x

Solution:

Q-2) Let $f(x, y, z)=\left(x^{2}+y^{2}\right) \ln \left(1+y^{2}\right)+y z+x z^{3}$. Let P_{0} be the point $(1,0,2)$.
(i) Find the gradient of f at P_{0}.
(ii) Find the linearization of f at P_{0}.
(iii) Find the equation for the tangent plane at P_{0} to the level surface of f through P_{0}.
(iv) If a bird flies through P_{0} with speed 5 , heading directly toward the point $(2,-1,1)$, what is the rate of change of f as seen by the bird as it passes through P_{0} ?
(v) In what direction from P_{0} should the bird fly at speed 5 to experience the greatest rate of increase of f ?

Solution:

Q-3) Find all local/global minimum and maximum points of $f(x, y)=x^{4}+24 y^{2}-4 x y^{3}$, if they exist. Also find any saddle points if they exist.

Solution:

Q-4) Among all the ellipsoids of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

which pass through the point $(2,1,3)$, find the ones with the minimum and the maximum volumes, if they exist.

Solution:

