\qquad

Math 114 Calculus II - Midterm Exam II - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail, if that is necessary. A correct answer without proper reasoning may not get any credit, except in the fill-in-the-blanks type problems.

Q-1) Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$.
Solution: We start with the geometric series

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \text { for }|x|<1
$$

By differentiating both sides term by term, we get

$$
\left(\frac{1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}, \text { for }|x|<1
$$

Now multiply both sides by x to obtain

$$
\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n}, \text { for }|x|<1
$$

Finally, putting $x=1 / e$, we obtain

$$
\sum_{n=1}^{\infty} \frac{n}{e^{n}}=\frac{1 / e}{(1-1 / e)^{2}}=\frac{e}{(e-1)^{2}} \approx 0.92
$$

Q-2 The point $(0,0)$ is a critical point for the function $f(x, y)=x^{4}+24 y^{2}-4 x y^{3}+2012$. What is the nature of this critical point? Is it a local/global min/max or a saddle point?

Solution: The discriminant vanishes here so the second derivative test fails. But we observe that

$$
f(x, y)-f(0,0)=x^{4}+4 y^{2}(6-x y)>0
$$

for $|x|,|y|<1$. So the origin is a local minimum point.
The function however is not bounded since $\lim _{x \rightarrow \infty} f(x, 0)=\infty$ and $\lim _{y \rightarrow \infty} f(1, y)=-\infty$. So there is no global minimum or maximum.

Q-3) Define

$$
f(x, y)= \begin{cases}\frac{y^{5}-x^{2} y}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0), \\ 0 & \text { if }(x, y)=(0,0) .\end{cases}
$$

Prove or disprove that f is differentiable at the origin.

Solution:

We first calculate the first derivatives.

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} \frac{0-0}{x}=0, \\
& f_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y}=\lim _{x \rightarrow 0} \frac{y-0}{y}=1 .
\end{aligned}
$$

Next we check for differentiability. Let

$$
\phi(x, y)=\frac{f(x, y)-f(0,0)-0 \cdot x-1 \cdot y}{\sqrt{x^{2}+y^{2}}}=-2 \cdot \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}} .
$$

Then

$$
\lim _{x \rightarrow 0} \phi(x, \lambda x)=\frac{-2 \lambda}{\sqrt{1+\lambda^{2}}} .
$$

Since this limit depends on path, the general limit does not exist and the function f is not differentiable at the origin.

Q-4) Let $f(x, y), \alpha(t)$ and $\beta(t)$ be C^{∞} functions with the following data.

$$
\begin{aligned}
& \alpha(0)=1, \quad \alpha^{\prime}(0)=2, \quad \alpha^{\prime \prime}(0)=3, \quad \beta(0)=7, \quad \beta^{\prime}(0)=11, \quad \beta^{\prime \prime}(0)=23, \\
& f(1,7)=\pi, \quad f_{x}(1,7)=a, \quad f_{x x}(1,7)=u, \quad f_{x y}(1,7)=v, \quad f_{y y}(1,7)=w, \quad f_{y}(1,7)=b .
\end{aligned}
$$

Let $F(t)=f(\alpha(t), \beta(t))$.
(i) Find $F(0)$. (1 point)
(ii) Find $F^{\prime}(0)$. (4 points)
(iii) Find $F^{\prime \prime}(0)$. (15 points)

Solution:

(i) $F(0)=f(\alpha(0), \beta(0))=f(1,7)=\pi$.
(ii) Set $x=\alpha(t)$ and $y=\beta(t)$. Then

$$
\begin{aligned}
& F^{\prime}(t)=f_{x}(x, y) x^{\prime}+f_{y}(x, y) y^{\prime} \\
& F^{\prime}(0)=a \cdot 2+b \cdot 11=2 a+11 b .
\end{aligned}
$$

(iii) Taking the derivative of $F^{\prime}(t)$ given above, we get

$$
\begin{aligned}
F^{\prime \prime}(t) & =\left[f_{x x}(x, y) x^{\prime}+f_{x y}(x, y) y^{\prime}\right] x^{\prime}+f_{x}(x, y) x^{\prime \prime}+\left[f_{y x}(x, y) x^{\prime}+f_{y y}(x, y) y^{\prime}\right] y^{\prime}+f_{y}(x, y) y^{\prime \prime} \\
F^{\prime \prime}(0) & =[u \cdot 2+v \cdot 11] \cdot 2+a \cdot 3+[v \cdot 2+w \cdot 11] \cdot 11+b \cdot 23 \\
& =3 a+23 b+4 u+44 v+121 w .
\end{aligned}
$$

Q-5) Change the order of integration of the following integrals as indicated.
(Grading: each box=1 point)

$$
\int_{0}^{8} \int_{x^{2}}^{6 x+16} d y d x=\int^{\square} \int \square d x d y+\int \square=\square \square d x
$$

$$
\int_{-4}^{0} \int_{-2 x-5}^{\sqrt{25-x^{2}}} d y d x+\int_{0}^{5} \int_{x-5}^{\sqrt{25-x^{2}}} d y d x=\int \square \int^{\square} d x d y
$$

Solution:

$$
\int_{0}^{8} \int_{x^{2}}^{6 x+16} d y d x=\int^{\frac{16}{\square}} \int_{0}^{\sqrt{y}} d x d y+\int \frac{64}{\square} \int^{\frac{\sqrt{y}}{(y-16) / 6}} d x d y
$$

$$
\int_{-4}^{0} \int_{-2 x-5}^{\sqrt{25-x^{2}}} d y d x+\int_{0}^{5} \int_{x-5}^{\sqrt{25-x^{2}}} d y d x=\int_{-\frac{0}{-5}}^{\frac{y+5}{-(y+5) / 2}} d x d y
$$

$$
+\int \frac{3}{\boxed{-}} \int \sqrt{\sqrt{25-y^{2}}} d x d y
$$

