MATH 116 FINAL EXAM: INTERMEDIATE CALCULUS III, July 26, 2008

1. (20 points) Find the absolute maximum and minimum values of the function $f(x, y)=x^{2}-2 x y+2 y$ on the rectangle $D=\{(x, y): 0 \leq x \leq 3,0 \leq y \leq 2\}$.

Solution: Since $f(x, y)$ is a differentiable function in the whole $x y$-plane, the only places where $f(x, y)$ can assume absolute maximum and minimum values are
(i) points inside D where $f_{x}(x, y)=f_{y}(x, y)=0$ (so called "critical points"') and
(ii) points on the boundary of D.

(i) Critical points:

$$
\begin{aligned}
& f_{x}(x, y)=2 x-2 y=0 \\
& f_{y}(x, y)=-2 x+2=0
\end{aligned} \quad \Longrightarrow \quad(x, y)=(1,1)
$$

Thus, the only critical point is $(1,1)$ and $f(1,1)=1$.
(ii) Boundary points: The boundary of D consists of four line segments: $O A, A B, B C, C O$, where $O=O(0,0), A=A(3,0), B=B(3,2)$ and $C=C(0,2)$.
(1) On the segment $O A$ we have $y=0$ and

$$
\left.f(x, y)\right|_{O A}=f(x, 0)=x^{2}, \quad 0 \leq x \leq 3
$$

is an increasing function whose values at the end points are $f(0,0)=0$ and $f(3,0)=9$.
(2) On the segment $A B$ we have $x=3$ and

$$
\left.f(x, y)\right|_{A B}=f(3, y)=9-6 y+2 y=9-4 y, \quad 0 \leq y \leq 2
$$

is a decreasing function whose values at end points are $f(3,0)=9$ and $f(3,2)=1$.
(3) On the segment $B C$ we have $y=2$ and

$$
\left.f(x, y)\right|_{B C}=f(x, 2)=x^{2}-4 x+4=(x-2)^{2}, \quad 0 \leq x \leq 3
$$

has a minimum value $f(2,2)=0$. Also values at the end points are $f(3,2)=1, f(0,2)=4$.
(4) On the segment $O C$ we have $x=0$ and

$$
\left.f(x, y)\right|_{O C}=f(0, y)=2 y, \quad 0 \leq y \leq 2
$$

is an increasing function whose values at the end points are $f(0,0)=0$ and $f(0,2)=4$.

Conclusion:

The absolute maximum value of $f(x, y)$ on D is 9 .
The absolute minimum value of $f(x, y)$ on D is 0 .

MATH 116 FINAL EXAM: INTERMEDIATE CALCULUS III, July 26, 2008
2. (20 points) Let

$$
\mathbf{F}=\left(3 x^{2} y+z\right) \mathbf{i}+\left(x^{3}+2 y z\right) \mathbf{j}+\left(x+y^{2}+4 z^{3}\right) \mathbf{k}
$$

be a vector field.
(a) Show that \mathbf{F} is conservative.
(b) Find a potential function for \mathbf{F}.
(c) Evaluate the work integral $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ where C is any smooth simple curve joining the points $A(0,1,1)$ to $B(1,1,0)$.

Solution:

(a) We have $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$, where

$$
M=3 x^{2} y+z, \quad N=x^{3}+2 y z, \quad P=x+y^{2}+4 z^{3} .
$$

Since M, N, P have continuous first order partial derivatives and

$$
\begin{aligned}
& \frac{\partial P}{\partial y}=2 y=\frac{\partial N}{\partial z} \\
& \frac{\partial M}{\partial z}=1=\frac{\partial P}{\partial x} \\
& \frac{\partial N}{\partial x}=3 x^{2}=\frac{\partial M}{\partial y}
\end{aligned}
$$

then, by the Component Test for Conservative Fields, \mathbf{F} is conservative.
Remark: To prove that \mathbf{F} is conservative one may also show that $\nabla \times \mathbf{F}=\overrightarrow{\mathbf{0}}$.
(b) Since \mathbf{F} is conservative, then

$$
\mathbf{F}=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}
$$

where $f(x, y, z)$ is a potential function \mathbf{F}. We have,

1) $\frac{\partial f}{\partial x}=M=3 x^{2} y+z \Longrightarrow f(x, y, z)=x^{3} y+z x+g(y, z)$;
2) $\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{3} y+z x+g(y, z)\right)=x^{3}+\frac{\partial g(y, z)}{\partial y}=N=x^{3}+2 y z \Longrightarrow \frac{\partial g(y, z)}{\partial y}=2 y z$
$\Longrightarrow g(y, z)=y^{2} z+h(z) \Longrightarrow f(x, y, z)=x^{3} y+z x+y^{2} z+h(z)$
3) $\frac{\partial f}{\partial z}=\frac{\partial}{\partial z}\left(x^{3} y+z x+y^{2} z+h(z)\right)=x+y^{2}+\frac{d h(z)}{d z}=P=x+y^{2}+4 z^{3} \Longrightarrow \frac{d h(z)}{d z}=4 z^{3}$
$\Longrightarrow h(z)=z^{4}+$ Const $\Longrightarrow f(x, y, z)=x^{3} y+z x+y^{2} z+z^{4}+$ Const

Thus, a potential function for \mathbf{F} is $f(x, y, z)=x^{3} y+z x+y^{2} z+z^{4}+$ Const.
(c) Since \mathbf{F} is conservative with a potential function $f(x, y, z)=x^{3} y+z x+y^{2} z+z^{4}+$ Const, then

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \nabla f \cdot d \mathbf{r}=f(B)-f(A)=f(1,1,0)-f(0,1,1)=-1
$$

MATH 116 FINAL EXAM: INTERMEDIATE CALCULUS III, July 26, 2008
3. (20 points) Verify the circulation-tangential form of Green's theorem for the field $\mathbf{F}(x, y)=x y \mathbf{i}+\left(y^{2}+x\right) \mathbf{j}$ over the unit circle $C: \vec{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, \quad 0 \leq t \leq 2 \pi$.

Solution: The Circulation-Curl form of Green's Theorem states that

$$
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

for any simple closed piecewise smooth curve C, region R enclosed by C and for M and N being continuous together with their partial derivatives in some open region containing C and R.

Evaluation of $\oint_{C} M d x+N d y$:

With the parametrization $x(t)=\cos t, y(t)=\sin t, 0 \leq t \leq 2 \pi$,

$$
\begin{gathered}
\oint_{C} M d x+N d y=\oint_{C} x y d x+\left(y^{2}+x\right) d y=\int_{0}^{2 \pi}\left\{\cos t \sin t(-\sin t)+\left(\sin ^{2} t+\cos t\right) \cos t\right\} d t \\
=\int_{0}^{2 \pi} \cos ^{2} t d t=\int_{0}^{2 \pi} \frac{1+\cos (2 t)}{2} d t=\pi
\end{gathered}
$$

Evaluation of $\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y$:
Region R is described in polar coordinates as $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$. We have,

$$
\begin{aligned}
& \iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{R}\left(\frac{\partial}{\partial x}\left(y^{2}+x\right)-\frac{\partial}{\partial y}(x y)\right) d x d y=\iint_{R}(1-x) d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{1}(1-r \cos \theta) r d r d \theta=\int_{0}^{2 \pi}\left[\frac{r^{2}}{2}-\frac{r^{3}}{3} \cos \theta\right]_{r=0}^{r=1}=\int_{0}^{2 \pi}\left(\frac{1}{2}-\frac{1}{3} \cos \theta\right) d \theta=\pi
\end{aligned}
$$

MATH 116 FINAL EXAM: INTERMEDIATE CALCULUS III, July 26, 2008
4. Compute

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

where

$$
\mathbf{F}=x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}
$$

and $S: z=4-x^{2}-y^{2}, z \geq 1$ and \mathbf{n} points away from the origin.
a) (10 points) directly,
b) (10 points) by Stokes' theorem

Solution:

(a) We have,

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R}(\nabla \times \mathbf{F}) \cdot \mathbf{n} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A=\iint_{R}(\nabla \times \mathbf{F}) \cdot \frac{\nabla f}{|\nabla f \cdot \mathbf{p}|} d A,
$$

where S is a level surface $f(x, y, z)=z+x^{2}+y^{2}-4=0$ that lies above a plane region R in the $x y$-plane described by $x^{2}+y^{2} \leq 3$. Here, $\mathbf{p}=\mathbf{k}$. Also,

$$
\begin{gathered}
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x z & y z & x y
\end{array}\right|=(x-y) \mathbf{i}+(x-y) \mathbf{j}, \\
\nabla f=2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k}, \quad|\nabla f \cdot \mathbf{p}|=|1|=1,
\end{gathered}
$$

and

$$
(\nabla \times \mathbf{F}) \cdot \frac{\nabla f}{|\nabla f \cdot \mathbf{p}|}=((x-y) \mathbf{i}+(x-y) \mathbf{j}) \cdot(2 x \mathbf{i}+2 y \mathbf{j}+\mathbf{k})=2\left(x^{2}-y^{2}\right)
$$

Thus,

$$
\begin{aligned}
& \iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{R} 2\left(x^{2}-y^{2}\right) d x d y=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} 2\left(r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta\right) r d r d \theta \\
&=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} 2 r^{3} \cos (2 \theta) d r d \theta=\int_{0}^{\sqrt{3}} \int_{0}^{2 \pi} 2 r^{3} \cos (2 \theta) d \theta d r=0
\end{aligned}
$$

(b) By Stokes' Theorem,

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} x z d x+y z d y+x y d z
$$

where $C: \quad \mathbf{r}(t)=\sqrt{3} \cos t \mathbf{i}+\sqrt{3} \sin t \mathbf{j}+\mathbf{k}, \quad 0 \leq t \leq 2 \pi$. We have,

$$
\oint_{C} x z d x+y z d y+x y d z=\int_{0}^{2 \pi}(\sqrt{3} \cos t(-\sqrt{3} \sin t)+\sqrt{3} \sin t(\sqrt{3} \cos t)) d t=0
$$

MATH 116 FINAL EXAM: INTERMEDIATE CALCULUS III, July 26, 2008
5. (20 points) Find the surface integral of $f(x, y, z)=x y-z^{2}$ over the surface

$$
S: \mathbf{r}(u, v)=(u+v) \mathbf{i}+(u-v) \mathbf{j}+v \mathbf{k}, \quad(0 \leq u \leq 1,0 \leq v \leq 1)
$$

Solution: Since

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right|=\mathbf{i}-\mathbf{j}-2 \mathbf{k}
$$

and

$$
\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{6}
$$

then

$$
\iint_{S}\left(x y-z^{2}\right) d \sigma=\int_{0}^{1} \int_{0}^{1}\left\{(u+v)(u-v)-v^{2}\right\}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v=\sqrt{6} \int_{0}^{1} \int_{0}^{1}\left(u^{2}-2 v^{2}\right) d u d v=-\frac{\sqrt{6}}{3} .
$$

