Summer 2007-08 MATH 116 Homework 2

Due on July 2, 2008.

No late homework will be accepted.

1. Use the method of Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y)=x^{2}+2 y^{2}+2 x+3
$$

subject to the constraint $x^{2}+y^{2}=4$.

Solution : Define $g(x, y)=x^{2}+y^{2}$. First note that

$$
\begin{aligned}
\nabla f=\lambda \nabla g & \Longleftrightarrow(2 x+2) \mathbf{i}+(4 y) \mathbf{j}=(2 \lambda x) \mathbf{i}+(2 \lambda y) \mathbf{j} \\
& \Longleftrightarrow 2 x+2=2 \lambda x \text { and } 4 y=2 \lambda y
\end{aligned}
$$

Hence $\nabla f=\lambda \nabla g$ implies $y=0$ or $\lambda=2$.
In case $y=0$, the equality $g(x, y)=4$ implies $x=\mp 2$.
In case $\lambda=2$, the equality $2 x+2=2 \lambda x$ implies $x=1$ and therefore $g(x, y)=4$ implies $y=\mp \sqrt{3}$.

Hence $\nabla f=\lambda \nabla g$ and $g(x, y)=4$ are both satisfied only when $(x, y)=$ $(2,0),(-2,0),(1, \sqrt{3})$, or $(1,-\sqrt{3})$.
We calculate the values of f at these points:
$f(2,0)=11, f(-2,0)=3, f(1, \sqrt{3})=12$, and $f(1,-\sqrt{3})=12$.
Since the set of points that satisfy $g(x, y)=4$ is a closed and bounded set, we can say that the maximum value of $f(x, y)$ subject to $g(x, y)=4$ is 12 and the minimum value of $f(x, y)$ subject to $g(x, y)=4$ is 3 .
2. Does the following limit exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x+y}-1-x-y-x y}{x^{2}+y^{2}} .
$$

Calculate the above limit if it exists. (Hint: You might want to use Taylor's formula for functions of two independent variables.)

Solution : Let $f(x, y)=e^{x+y}$. Then by Taylor's formula for $f(x, y)$ at the origin we have
$f(x, y)=f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2}\left(x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right)$
$+\frac{1}{6}\left(x^{3} f_{x x x}(c x, c y)+3 x^{2} y f_{x x y}(c x, c y)+3 x y^{2} f_{x y y}(c x, c y)+y^{3} f_{y y y}(c x, c y)\right)$
for some $0 \leq c=c(x, y) \leq 1$. Note that

$$
f_{x x x}(c x, c y)=f_{x x y}(c x, c y)=f_{x y y}(c x, c y)=f_{y y y}(c x, c y)=e^{c(x+y)}
$$

Hence
$e^{x+y}=1+x+y+\frac{1}{2}\left(x^{2}+2 x y+y^{2}\right)+\frac{1}{6}\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}\right) e^{c(x, y)(x+y)}$
for some $0 \leq c(x, y) \leq 1$. Therefore

$$
\frac{e^{x+y}-1-x-y-x y}{x^{2}+y^{2}}=\frac{1}{2}+\frac{1}{6}\left(\frac{x^{3}+3 x^{2} y+3 x y^{2}+y^{3}}{x^{2}+y^{2}}\right) e^{c(x, y)(x+y)}
$$

for some $0 \leq c(x, y) \leq 1$. Hence

$$
\frac{1}{2}-\frac{1}{6}(|x|+3|y|+3|x|+|y|) e^{|x+y|} \leq \frac{e^{x+y}-1-x-y-x y}{x^{2}+y^{2}}
$$

and

$$
\frac{e^{x+y}-1-x-y-x y}{x^{2}+y^{2}} \leq \frac{1}{2}+\frac{1}{6}(|x|+3|y|+3|x|+|y|) e^{|x+y|}
$$

we also note that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{1}{2} \mp \frac{1}{6}(|x|+3|y|+3|x|+|y|) e^{|x+y|}=\frac{1}{2} .
$$

Hence by the Sandwich Theorem

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x+y}-1-x-y-x y}{x^{2}+y^{2}}=\frac{1}{2} .
$$

3. Calculate $\int_{2}^{3} \int_{2}^{y} \frac{\sin (x)}{x} d x d y+\int_{3}^{4} \int_{2}^{3} \frac{\sin (x)}{x} d x d y+\int_{4}^{9} \int_{\sqrt{y}}^{3} \frac{\sin (x)}{x} d x d y$.

Solution : Instead of the integral

$$
\int_{2}^{3} \int_{2}^{y} \frac{\sin (x)}{x} d x d y+\int_{3}^{4} \int_{2}^{3} \frac{\sin (x)}{x} d x d y+\int_{4}^{9} \int_{\sqrt{y}}^{3} \frac{\sin (x)}{x} d x d y
$$

we can just write $\iint_{R} \frac{\sin (x)}{x} d A$ where R is the region defined as follows:

$$
R=\left\{\begin{array}{l|l}
(x, y) & \begin{array}{c}
(2 \leq y \leq 3 \text { and } 2 \leq x \leq y) \text { or } \\
(3 \leq y \leq 4 \text { and } 2 \leq x \leq 3) \text { or } \\
(4 \leq y \leq 9 \text { and } \sqrt{y} \leq x \leq 3)
\end{array}
\end{array}\right\}
$$

Hence

$$
R=\left\{(x, y) \mid 2 \leq x \leq 3 \text { and } x \leq y \leq x^{2}\right\}
$$

Therefore instead of $\iint_{R} \frac{\sin (x)}{x} d A$ we can now write

$$
\begin{gathered}
\int_{2}^{3} \int_{x}^{x^{2}} \frac{\sin (x)}{x} d y d x=\int_{2}^{3}(x \sin x-\sin x) d x \\
=-x \cos x-\sin x+\left.\cos x\right|_{2} ^{3}=-2 \cos (3)-\sin (3)+\cos (2)+\sin (2)
\end{gathered}
$$

4. Calculate the area of the region enclosed by the curve $r=\cos (2 \theta)$.

Solution : The graph of $r=\cos (2 \theta)$ is like a four leaved rose and the region enclosed by one of these loops is swept out by a ray that rotates from $\theta=-\frac{\pi}{4}$ to $\theta=\frac{\pi}{4}$. Hence the area enclosed by the curve $r=\cos (2 \theta)$ is equal to

$$
\begin{gathered}
4 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \int_{0}^{\cos (2 \theta)} r d r d \theta=4 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos ^{2}(2 \theta)}{2} d \theta=4 \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1+\cos (4 \theta)}{4} d \theta= \\
=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}(1+\cos (4 \theta)) d \theta=\theta+\left.\frac{\sin (4 \theta)}{4}\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}=\frac{\pi}{2}
\end{gathered}
$$

5. Calculate the improper integral

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

Solution :

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\int_{0}^{2 \pi} \lim _{b \rightarrow \infty} \int_{0}^{b} e^{-r^{2}} r d r d \theta= \\
& =\int_{0}^{2 \pi} \lim _{b \rightarrow \infty}\left(\left.\frac{-e^{-r^{2}}}{2}\right|_{0} ^{b}\right) d \theta=\int_{0}^{2 \pi} \lim _{b \rightarrow \infty}\left(\frac{-e^{-b^{2}}}{2}+\frac{1}{2}\right) d \theta=\int_{0}^{2 \pi} \frac{1}{2} d \theta=\pi
\end{aligned}
$$

