Summer 2007-08 MATH 116 Homework 3 Solutions

1. Find the outward flux of the vector field

$$
\mathbf{F}(x, y)=\left(x^{2}+y^{2}\right) \sin (x) \mathbf{i}+e^{x y^{2}} \ln \left(\frac{y}{e}\right) \mathbf{j}
$$

across the rectangle with vertices $(0,1),(\pi, 1),(0, e)$, and (π, e).

Solution : Let C denote the rectangle with vertices $(0,1),(\pi, 1),(0, e)$, and (π, e).

We can consider C as the union of the following four line segments: C_{1} from $(0,1)$ to $(\pi, 1), C_{2}$ from $(\pi, 1)$ to $(\pi, e), C_{3}$ from (π, e) to $(0, e)$, and C_{4} from $(0, e)$ to $(0,1)$.

Assume that \mathbf{n} denotes the outward-pointing unit normal vector on C.
The curve C_{1} can be parameterized by $\mathbf{r}_{1}(t)=t \mathbf{i}+\mathbf{j}$ for t in $[0, \pi]$.
Hence on C_{1} we have $\mathbf{F} \cdot \mathbf{n}=\left(\left(t^{2}+1\right) \sin (t) \mathbf{i}-e^{t} \mathbf{j}\right) \cdot(-\mathbf{j})=e^{t}$.
The curve C_{2} can be parameterized by $\mathbf{r}_{2}(t)=\pi \mathbf{i}+t \mathbf{j}$ for t in $[1, e]$.
Hence on C_{2} we have $\mathbf{F} \cdot \mathbf{n}=\left(e^{\pi t^{2}} \ln \left(\frac{t}{e}\right) \mathbf{j}\right) \cdot(\mathbf{i})=0$.
The curve C_{3} can be parameterized by $\mathbf{r}_{3}(t)=-t \mathbf{i}+e \mathbf{j}$ for t in $[-\pi, 0]$.
Hence on C_{3} we have $\mathbf{F} \cdot \mathbf{n}=\left(-\left(t^{2}+e^{2}\right) \sin (t) \mathbf{i}\right) \cdot(\mathbf{j})=0$.
The curve C_{4} can be parameterized by $\mathbf{r}_{4}(t)=-t \mathbf{j}$ for t in $[-e,-1]$. Hence on C_{4} we have $\mathbf{F} \cdot \mathbf{n}=\left(\ln \left(\frac{-t}{e}\right) \mathbf{j}\right) \cdot(-\mathbf{i})=0$.
Hence the outward flux of the vector field $\mathbf{F}(x, y)$ across the rectangle C can be calculated as follows:

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C_{1}} \mathbf{F} \cdot \mathbf{n} d s+\int_{C_{2}} \mathbf{F} \cdot \mathbf{n} d s+\int_{C_{3}} \mathbf{F} \cdot \mathbf{n} d s+\int_{C_{4}} \mathbf{F} \cdot \mathbf{n} d s \\
=\int_{0}^{\pi} e^{t} d t+0+0+0=\left.e^{t}\right|_{0} ^{\pi}=e^{\pi}-1
\end{gathered}
$$

2. Find the work done by the force

$$
\mathbf{F}(x, y, z)=\left(2 x z^{3}+e^{y}\right) \mathbf{i}+\left(x e^{y}+4 y^{3} \cos (z)\right) \mathbf{j}+\left(3 x^{2} z^{2}-y^{4} \sin (z)\right) \mathbf{k}
$$

over the curve parameterized by

$$
\mathbf{r}(t)=\sin (\pi t) \mathbf{i}+t^{3} \mathbf{j}+(2 t-1) \mathbf{k}, \quad \text { for } 0 \leq t \leq \frac{1}{2}
$$

in the direction of increasing t.

Solution : First we will check whether if the vector field $\mathbf{F}(x, y, z)$ is conservative on \mathbb{R}^{3}. We have

$$
\begin{array}{cccc}
\frac{\partial}{\partial y}\left(2 x z^{3}+e^{y}\right) & = & e^{y} & =\frac{\partial}{\partial x}\left(x e^{y}+4 y^{3} \cos (z)\right), \\
\frac{\partial}{\partial z}\left(x e^{y}+4 y^{3} \cos (z)\right) & =-4 y^{3} \sin (z) & =\frac{\partial}{\partial y}\left(3 x^{2} z^{2}-y^{4} \sin (z)\right), \\
\frac{\partial}{\partial z}\left(2 x z^{3}+e^{y}\right) & =6 x z^{2} & =\frac{\partial}{\partial x}\left(3 x^{2} z^{2}-y^{4} \sin (z)\right) .
\end{array}
$$

By the above three equalities we know that $\mathbf{F}(x, y, z)$ is conservative on \mathbb{R}^{3}. Now let's try to find a potential function $f(x, y, z)$ for $\mathbf{F}(x, y, z)$. We know that we should have $f_{x}(x, y, z)=2 x z^{3}+e^{y}$. Hence we have

$$
f(x, y, z)=x^{2} z^{3}+x e^{y}+g(y, z)
$$

for some function $g(y, z)$. We also know that we should have $f_{y}(x, y, z)=$ $x e^{y}+4 y^{3} \cos (z)$. This means $g_{y}(y, z)=4 y^{3} \cos (z)$. Hence we have

$$
f(x, y, z)=x^{2} z^{3}+x e^{y}+y^{4} \cos (z)+h(z)
$$

for some function $\mathrm{h}(\mathrm{z})$. We also know that we should have $f_{z}(x, y, z)=$ $3 x^{2} z^{2}-y^{4} \sin (z)$. This means $h^{\prime}(z)=0$. Hence we have

$$
f(x, y, z)=x^{2} z^{3}+x e^{y}+y^{4} \cos (z)+C
$$

for some constant C. Hence the work done by the force $\mathbf{F}(x, y, z)$ over the curve parameterized by $\mathbf{r}(t)$ from $t=0$ to $t=\frac{1}{2}$ can be calculated as follows:

$$
\int_{\mathbf{r}(0)}^{\mathbf{r}\left(\frac{1}{2}\right)} \mathbf{F} d \mathbf{r}=\int_{(0,0,-1)}^{\left(1, \frac{1}{8}, 0\right)} \mathbf{F} d \mathbf{r}=f\left(1, \frac{1}{8}, 0\right)-f(0,0,-1)=\sqrt[8]{e}+\frac{1}{4096}
$$

3. Among all smooth simple closed curves in the plane oriented counterclockwise, find the one along which the work done by

$$
\mathbf{F}(x, y)=\left(\frac{4}{3} y^{3}-20 y+5\right) \mathbf{i}+\left(1+5 x-3 x^{3}\right) \mathbf{j}
$$

is greatest and calculate the area of the region enclosed by this smooth simple closed curve.

Solution : Let C be a smooth simple closed curve in the plane oriented counterclockwise and R be the region enclosed by the curve C. Let $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$. Then by Green's Theorem we have
$($ Work done over $C)=\oint_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{k} d A=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$

$$
=\iint_{R}\left(\left(5-9 x^{2}\right)-\left(4 y^{2}-20\right)\right) d A=\iint_{R}\left(25-9 x^{2}-4 y^{2}\right) d A=(*)
$$

Define a region $R_{0}=\left\{(x, y) \mid 9 x^{2}+4 y^{2} \leq 25\right\}$ and let C_{0} be the boundary of the region R_{0} oriented counterclockwise. Then we have

$$
\begin{gathered}
(*)=\iint_{R \cap R_{0}}\left(25-9 x^{2}-4 y^{2}\right) d A+\iint_{R-R_{0}}\left(25-9 x^{2}-4 y^{2}\right) d A \\
\leq \iint_{R \cap R_{0}}\left(25-9 x^{2}-4 y^{2}\right) d A \leq \iint_{R_{0}}\left(25-9 x^{2}-4 y^{2}\right) d A= \\
=\oint_{C_{0}} \mathbf{F} \cdot \mathbf{T} d s=\left(\text { Work done over } C_{0}\right)
\end{gathered}
$$

Hence among all smooth curves the greatest work is done over C_{0}. Hence the area enclosed by C_{0} is the area of R_{0} which could be calculated by making the subs $u=3 x$ and $v=2 y$ as follows

$$
\iint_{R_{0}} d A=\iint_{\left\{(u, v) \mid u^{2}+v^{2} \leq 25\right\}} J(u, v) d u d v=\iint_{\left\{(u, v) \mid u^{2}+v^{2} \leq 25\right\}} \frac{1}{6} d u d v=\frac{25 \pi}{6}
$$

4. Let C be a smooth curve that encloses a region R such that the area of the region R is 7π and the interior of the region R contains the rectangle

$$
D=\{(x, y) \mid-1 \leq x \leq 1 \text { and }-1 \leq y \leq 1\}
$$

Compute the outward flux of the vector field

$$
\mathbf{F}(x, y)=\left(\frac{2 x+y}{x^{2}+y^{2}}+3 x+6 y\right) \mathbf{i}+\left(\frac{2 y-x}{x^{2}+y^{2}}+5 x+7 y\right) \mathbf{j}
$$

across the curve C.

Solution : Define $D_{0}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ and let C_{0} be the boundary of D_{0} oriented counterclockwise. Then D_{0} is a region included in the region D hence it is also included in the region R. First note that the vector field $\mathbf{F}(x, y)$ is defined on the region $R-D_{0}$ and second note the following equality
$\operatorname{div}(\mathbf{F})=\left(\frac{2 x^{2}+2 y^{2}-4 x^{2}-2 x y}{\left(x^{2}+y^{2}\right)^{2}}+3\right)+\left(\frac{2 x^{2}+2 y^{2}-4 y^{2}+2 x y}{\left(x^{2}+y^{2}\right)^{2}}+7\right)=10$
Hence

$$
\begin{aligned}
& \iint_{R-D_{0}} \operatorname{div}(\mathbf{F}) d A=10 \iint_{R-D_{0}} d A=10\left(\text { area of } R-D_{0}\right)= \\
& =10\left((\text { area of } R)-\left(\text { area of } D_{0}\right)\right)=10(7 \pi-\pi)=60 \pi
\end{aligned}
$$

We also have

$$
\begin{aligned}
& \oint_{C_{0}} \mathbf{F} \cdot \mathbf{n} d s=\oint_{C_{0}}-\left(\frac{2 y-x}{x^{2}+y^{2}}+5 x+7 y\right) d x+\left(\frac{2 x+y}{x^{2}+y^{2}}+3 x+6 y\right) d y= \\
& =\oint_{C_{0}}-(2 y-x+5 x+7 y) d x+(2 x+y+3 x+6 y) d y=\oint_{C_{0}}-(4 x+9 y) d x+(5 x+7 y) d y= \\
& \left.\quad=\iint_{D_{0}}(5-(-9)) d A=14 \iint_{D_{0}} d A=14 \text { (area of } D_{0}\right)=14 \pi
\end{aligned}
$$

Now we have

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s-\oint_{C_{0}} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R-D_{0}} \operatorname{div}(\mathbf{F}) d A
$$

thus the outward flux of the vector field $\mathbf{F}(x, y)$ across the curve C is 74π.
5. Find the area of the surface $z=2 x y$ inside the cylinder $x^{2}+y^{2}=9$.

Solution : Define $f(x, y, z)=z-2 x y$ and let S be the surface $f(x, y, z)=$ 0 inside the cylinder $x^{2}+y^{2}=9$. Choose $\mathbf{p}=\mathbf{k}$ and let R be shadow region of the surface S in the $x y$-plane with unit normal vector \mathbf{p}. Then

$$
\begin{gathered}
\text { (Area of } S \text {) }=\iint_{S} d \sigma=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \mathbf{p}|} d A=\iint_{R} \frac{|-2 y \mathbf{i}-2 x \mathbf{j}+\mathbf{k}|}{|(-2 y \mathbf{i}-2 x \mathbf{j}+\mathbf{k}) \cdot \mathbf{k}|} d A= \\
=\iint_{R} \sqrt{4 y^{2}+4 x^{2}+1} d A=\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{4 r^{2}+1} r d r d \theta= \\
=\int_{0}^{2 \pi}\left(\left.\frac{1}{12}\left(4 r^{2}+1\right)^{\frac{3}{2}}\right|_{0} ^{3}\right) d \theta=\int_{0}^{2 \pi} \frac{1}{12}\left(37^{\frac{3}{2}}-1\right) d \theta=\frac{\pi}{6}\left(37^{\frac{3}{2}}-1\right)
\end{gathered}
$$

