## 1. (15 points) Calculate

$$
\iint_{R}(3 x+1) d A
$$

where $R$ is the region bounded by $y=x^{2}, y=(x-1)^{2}, y=0$.

## Solution:

The region of integration is a "triangular" region bounded by

1) the part of the parabola $y=x^{2}$ from $(0,0)$ to $(1 / 2,1 / 4)$ on the left;
$2)$ the line segment connecting $(0,0)$ and $(1,0) \underline{\text { from below; }}$
2) the part of the parabola $y=(x-1)^{2}$ from $(1 / 2,1 / 4)$ to $(1,0)$ on the right. $\underline{1^{\text {st }} \text { way: }}$

$$
\begin{gathered}
\iint_{R}(3 x+1) d A=\int_{0}^{1 / 4} \int_{\sqrt{y}}^{1-\sqrt{y}}(3 x+1) d x d y=\left.\int_{0}^{1 / 4}\left(\frac{3 x^{2}}{2}+x\right)\right|_{x=\sqrt{y}} ^{x=1-\sqrt{y}} d y \\
=\int_{0}^{1 / 4}\left(\frac{5}{2}-5 \sqrt{y}\right) d y=\left.\left(\frac{5}{2} y-5 \frac{y^{3 / 2}}{3 / 2}\right)\right|_{y=0} ^{y=1 / 4}=\frac{5}{24}
\end{gathered}
$$

$2^{\text {nd }}$ way:

$$
\begin{gathered}
\iint_{R}(3 x+1) d A=\int_{0}^{1 / 2} \int_{0}^{x^{2}}(3 x+1) d y d x+\int_{1 / 2}^{1} \int_{0}^{(x-1)^{2}}(3 x+1) d y d x= \\
=\left.\int_{0}^{1 / 2}(3 x+1) y\right|_{y=0} ^{y=x^{2}} d x+\left.\int_{1 / 2}^{1}(3 x+1) y\right|_{y=0} ^{y=(x-1)^{2}} d x \\
=\int_{0}^{1 / 2}\left(3 x^{3}+x^{2}\right) d x+\int_{1 / 2}^{1}\left(3 x^{3}-5 x^{2}+x+1\right) d x \\
=\left.\left(\frac{3}{4} x^{4}+\frac{x^{3}}{3}\right)\right|_{0} ^{1 / 2}+\left.\left(\frac{3}{4} x^{4}-\frac{5}{3} x^{3}+\frac{x^{2}}{2}+x\right)\right|_{1 / 2} ^{1}=\frac{5}{24}
\end{gathered}
$$

## Solution to MATH 116 Midterm II Exam, July 5, 2008

2. a) (15 points) Find the area of the region between the cardioid $r=1+\cos \theta$ and the circle $r=\cos \theta$.

## Solution:

The area of the region $R_{1}$ inside the cardioid is

$$
\begin{aligned}
\operatorname{Area}\left(R_{1}\right) & =\int_{0}^{2 \pi} \int_{0}^{1+\cos \theta} r d r d \theta=\left.\int_{0}^{2 \pi} \frac{r^{2}}{2}\right|_{r=0} ^{r=1+\cos \theta} d \theta=\int_{0}^{2 \pi} \frac{(1+\cos \theta)^{2}}{2} d \theta \\
= & \int_{0}^{2 \pi}\left(\frac{3}{4}+\cos \theta+\frac{\cos (2 \theta)}{4}\right) d \theta=\frac{3 \pi}{2} \quad \text { square units. }
\end{aligned}
$$

The area of the disc $R_{2}$ enclosed by the circle $r=\cos \theta$ (whose equation is $\left(x-\frac{1}{2}\right)^{2}+y^{2}=\frac{1}{4}$ in the Cartesian coordinates) is

$$
\text { Area }\left(R_{2}\right)=\pi \cdot\left(\frac{1}{2}\right)^{2}=\frac{\pi}{4} \quad \text { square units. }
$$

Thus, the area of the region inside the cardioid and outside of the circle is

$$
\text { Area }\left(R_{1}\right)-\operatorname{Area}\left(R_{2}\right)=\frac{3 \pi}{2}-\frac{\pi}{4}=\frac{5 \pi}{4} \quad \text { square units. }
$$

2. b) (10 points) Calculate the improper integral

$$
\int_{0}^{\infty} \int_{x}^{\sqrt{3} x} e^{-\left(x^{2}+y^{2}\right)} d y d x
$$

## Solution:

The region of integration is the angle in the first quadrant between the lines $y=x$ and $y=\sqrt{3} x$. These two boundary lines in polar coordinates have equations $\theta=\frac{\pi}{4}$ and $\theta=\frac{\pi}{3}$.

In polar coordinates the integral can be rewritten and calculated as

$$
\begin{gathered}
\int_{\pi / 4}^{\pi / 3} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=\frac{1}{2} \int_{\pi / 4}^{\pi / 3}\left\{\lim _{c \rightarrow \infty} \int_{0}^{c} e^{-r^{2}} r d r\right\} d \theta=\left.\int_{\pi / 4}^{\pi / 3} \lim _{c \rightarrow \infty}\left(-\frac{e^{-r^{2}}}{2}\right)\right|_{0} ^{c} d \theta= \\
=\int_{\pi / 4}^{\pi / 3} \lim _{c \rightarrow \infty}\left(-\frac{e^{-c^{2}}}{2}+\frac{1}{2}\right) d \theta=\int_{\pi / 4}^{\pi / 3} \frac{1}{2} d \theta=\frac{\pi}{24}
\end{gathered}
$$

3. a) (10 points) Use Taylor's formula for $f(x, y)=\int_{0}^{x+y^{2}} e^{-t^{2}} d t$ at the origin to find a quadratic approximation of $f(x, y)$ near the origin.
Solution: The quadratic approximation of $f(x, y)$ at the origin is $f(x, y) \approx Q(x, y)$, where

$$
Q(x, y)=f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\frac{1}{2!}\left(f_{x x}(0,0) x^{2}+2 f_{x y}(0,0) x y+f_{y y}(0,0) y^{2}\right)
$$

Since $f(0,0)=0$,

$$
\begin{array}{ll}
f_{x}=e^{-\left(x+y^{2}\right)^{2}}, & f_{x}(0,0)=1 \\
f_{y}=e^{-\left(x+y^{2}\right)^{2}} \cdot 2 y, & f_{y}(0,0)=0 \\
f_{x x}=-e^{-\left(x+y^{2}\right)^{2}} \cdot 2\left(x+y^{2}\right), & f_{x x}(0,0)=0 \\
f_{x y}=-e^{-\left(x+y^{2}\right)^{2}} \cdot 2\left(x+y^{2}\right) \cdot 2 y, & f_{x y}(0,0)=0 \\
f_{y y}=2 e^{-\left(x+y^{2}\right)^{2}}-2 y e^{-\left(x+y^{2}\right)^{2}} \cdot 2\left(x+y^{2}\right) \cdot 2 y, & f_{y y}(0,0)=2
\end{array}
$$

then

$$
Q(x, y)=x+y^{2}
$$

3. b) ( 10 points) Use the method of Lagrange multipliers to find the volume of the largest (maximum volume) closed rectangular box in the first octant having three faces in the coordinate planes and a vertex on the plane $\frac{x}{3}+\frac{y}{4}+\frac{z}{2}=1$.
Solution: We have to maximize the function $f(x, y, z)=x y z$ subject to the constraint $g(x, y, z)=\frac{x}{3}+\frac{y}{4}+\frac{z}{2}-1=0$. To do so, we have to solve the system

$$
\begin{aligned}
& \begin{array}{lll} 
\\
\nabla f=\lambda \nabla g \\
g(x, y, z)=0
\end{array} \quad \rightarrow \quad \begin{array}{l}
y z \vec{i}+x z \vec{j}+x y \vec{k}=\frac{\lambda}{3} \vec{i}+\frac{\lambda}{4} \vec{j}+\frac{\lambda}{2} \vec{k} \\
\frac{x}{3}+\frac{y}{4}+\frac{z}{2}=1
\end{array} \quad \rightarrow \quad \begin{array}{l}
3 y z=\lambda \\
\\
\end{array} \quad \begin{array}{l}
4 x z=\lambda \\
2 x y=\lambda \\
\frac{x}{3}+\frac{y}{4}+\frac{z}{2}=1
\end{array} \\
& \begin{array}{ll}
z(3 y-4 x)=0 \\
2 x(2 z-y)=0 \\
\frac{x}{3}+\frac{y}{4}+\frac{z}{2}=1
\end{array} \rightarrow(\text { since } \quad x, y, z \neq 0) \quad \begin{array}{l}
x=(3 / 4) y \\
z=(1 / 2) y \\
\\
1=\frac{x}{3}+\frac{y}{4}+\frac{z}{2}=\frac{1}{3} \cdot \frac{3}{4} y+\frac{1}{4} y+\frac{1}{4} y=\frac{3}{4} y
\end{array}
\end{aligned}
$$

Thus, the dimensions that maximize the volume of the rectangle are

$$
y=\frac{4}{3}, \quad x=\frac{3 y}{4}=1, \quad z=\frac{y}{2}=\frac{2}{3}
$$

and therefore, the volume of the largest rectangular box satisfying conditions above is

$$
\text { Maximum Volume }=1 \cdot \frac{4}{3} \cdot \frac{2}{3}=\frac{8}{9} \quad \text { cubicunits. }
$$

Remark: We consider a continuous function $f(x, y, z)=x y z$ on a closed bounded triangular region $R$ described by $\frac{x}{3}+\frac{y}{4}+\frac{z}{2}=1, x \geq 0, y \geq 0, z \geq 0$. Therefore, $f(x, y, z)$ attains its absolute maximum and minimum values on $R$. At all the boundary points of $R$ function $f(x, y, z)$ takes its absolute minimum value 0 . In the solution above we have found that the absolute maximum value $\frac{8}{9}$ of $f(x, y, z)$ is attained at the interior point $\left(1, \frac{4}{3}, \frac{2}{3}\right)$.

## Solution to MATH 116 Midterm II Exam, July 5, 2008

4. Let $D$ be the solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$ and below by the paraboloid $z=\frac{1}{3}\left(x^{2}+y^{2}\right)$. Without evaluating the integrals, set up iterated integrals in the following coordinate systems to calculate the volume of $D$ :

## Solution:

The boundary surfaces are

| Coordinates : | Cartesian | Cylindrical | Spherical |
| :--- | :--- | :--- | :--- |
| from above: | $x^{2}+y^{2}+z^{2}=4$ | $r^{2}+z^{2}=4$ | $\rho=2$ |
| from below: | $3 z=x^{2}+y^{2}$ | $3 z=r^{2}$ | $3 \cos \phi=\rho \sin ^{2} \phi$ |

The boundary surfaces meet at the points $(x, y, z)$, where $x^{2}+y^{2}+z^{2}=4$ and $3 z=x^{2}+y^{2}$. Therefore, $z$ coordinate of the points on the intersection curve satisfies $3 z+z^{2}=4, z>0$, or the same, $z=1$. It implies that $x$ and $y$ coordinates of the points on the intersection curve satisfy $x^{2}+y^{2}=3$.

Thus, the orthogonal $x y$-projection of the solid $D$ is a disc enclosed by the circle $x^{2}+y^{2}=3$.
Also note that all the points $(\rho, \phi, \theta)$ on the intersection curve satisfy $\rho=2$ and $\phi=\frac{\pi}{3}$.
(a) (5 points) in cartesian coordinates,

$$
\operatorname{Volume}(D)=\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{3-x^{2}}}^{\sqrt{3-x^{2}}} \int_{\frac{1}{3}\left(x^{2}+y^{2}\right)}^{\sqrt{4-x^{2}-y^{2}}} d z d y d x
$$

(b) (5 points) in cylindrical coordinates, and

$$
\operatorname{Volume}(D)=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{\frac{1}{3} r^{2}}^{\sqrt{4-r^{2}}} r d z d r d \theta
$$

(c) (10 points) in spherical coordinates.

We divide the solid $D$ into two parts: $D_{1}$ and $D_{2}$, where $D_{1}$ is a solid bounded below by the cone $\phi=\frac{\pi}{3}$ and above by the sphere $\rho=2$, and $D_{2}$ is a solid bounded below by the paraboloid $3 \cos \phi=\rho \sin ^{2} \phi$ and above by the cone $\phi=\frac{\pi}{3}$.

$$
\operatorname{Volume}(D)=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \int_{0}^{2} \rho^{2} \sin \phi \quad d \rho d \phi d \theta+\int_{0}^{2 \pi} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{0}^{3 \frac{\cos \phi}{\sin ^{2} \phi}} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

5. (20 points) Evaluate the integral

$$
\iint_{R} \cos \left(\frac{2 x+2 y}{x-y}\right) d A
$$

where $R$ is the trapezoidal (yamuksu) region with vertices $(1,0),(2,0),(0,-2)$, and $(0,-1)$. Solution: Introduce

$$
\begin{aligned}
& u=x+y \\
& v=x-y
\end{aligned}
$$

Then

$$
\begin{aligned}
& x=\frac{1}{2}(u+v), \\
& y=\frac{1}{2}(u-v),
\end{aligned}
$$

and

$$
\frac{\partial(x, y)}{\partial(u, v)}=J(u, v)=\left|\begin{array}{rr}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{2}
$$

Boundary curves in $x y$-plane Boundary curves in uv-plane

$$
\begin{array}{ll}
x=0 & u=-v \\
y=0 & u=v \\
x-y=1 & v=1 \\
x-y=2 & v=2
\end{array}
$$

Thus the region of integration in $u v$-plane is a trapezoidal region bounded by

1) $u=-v$ on the left;
2) $u=v \quad$ on the right;
3) $v=1 \quad$ from below;
4) $v=2 \quad$ from above.

Then

$$
\begin{gathered}
\iint_{R} \cos \left(\frac{2 x+2 y}{x-y}\right) d A=\int_{1}^{2} \int_{-v}^{v} \cos \left(\frac{2 u}{v}\right)|J(u, v)| d u d v=\frac{1}{2} \int_{1}^{2} \int_{-v}^{v} \cos \left(\frac{2 u}{v}\right) d u d v \\
=\left.\frac{1}{2} \int_{1}^{2} \frac{v}{2} \sin \left(\frac{2 u}{v}\right)\right|_{u=-v} ^{u=v} d v=\frac{\sin 2}{2} \int_{1}^{2} v d v=\frac{3}{4} \sin 2 .
\end{gathered}
$$

