Math 116 Calculus - Homework \# 1 - Solutions

Remark: Solve all the problems. One of the problems, randomly chosen, will be graded.

Q-1) Can the function $f(x, y)=\frac{\sin x \sin ^{3} y}{1-\cos \left(x^{2}+y^{2}\right)}$ be defined at the origin in such a way that it becomes continuous there? If so, how?

Solution: Limit of the expression as (x, y) goes to $(0,0)$ along x-axis (or y-axis) is zero but limit along $y=x$ direction is $1 / 2$. So this function cannot be continuously extended to the origin.

Q-2) Directional derivative of a function $f(x, y)$ at the point $(-1,1)$ in the direction $\vec{i}+\vec{j}$ is 5 , and in the direction $\vec{i}-\vec{j}$ is -5 . Find the directional derivative of $f(x, y)$ at $(-1,1)$ in the direction of $-\vec{i}-2 \vec{j}$.

Solution: $\vec{u}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \vec{v}=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\vec{w}=\left(\frac{-1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right)$ are the unit vectors in the directions of $\vec{i}+\vec{j}, \vec{i}-\vec{j}$ and $-\vec{i}-2 \vec{j}$ respectively.

We are given that $\nabla f(-1,1) \cdot \vec{u}=5$ and $\nabla f(-1,1) \cdot \vec{v}=-5$. This amounts to saying: $f_{x}(-1,1) \frac{1}{\sqrt{2}}+f_{y}(-1,1) \frac{1}{\sqrt{2}}=5$ and
$f_{x}(-1,1) \frac{1}{\sqrt{2}}-f_{y}(-1,1) \frac{1}{\sqrt{2}}=-5$.
From these equations we find that $f_{x}(-1,1)=0$ and $f_{y}(-1,1)=5 \sqrt{2}$.
We are asked to calculate $\nabla f(-1,1) \cdot \vec{w}=f_{x}(-1,1) \frac{-1}{\sqrt{5}}+f_{y}(-1,1) \frac{-2}{\sqrt{5}}$. Putting in the values of $f_{x}(-1,1)$ and $f_{y}(-1,1)$ into this, we find that the required directional derivative is $-2 \sqrt{2} \sqrt{5}$.

Q-3) The plane $y=-1$ intersects the elliptic paraboloid $2 x^{2}+y^{2}-z=0$ in a parabola. Write parametric equations for the tangent line to this parabola at the point $(2,-1,9)$.

Solution: Let $f(x, y, z)=2 x^{2}+y^{2}-z$ and $g(x, y, z)=y+1$. The parabola in the question is the curve of intersection of the two level surfaces $f=0$ and $g=0$. The tangent line of this parabola, at any point (x, y, z) on it, points in the direction of $\vec{n}(x, y, z)$ where

$$
\vec{n}(x, y, z)=\nabla f \times \nabla g=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
4 x & 2 y & -1 \\
0 & 1 & 0
\end{array}\right|=(1,0,4 x)
$$

Parametric equations of the tangent line to this parabola at the point $(2,-1,9)$ is given by $(x(t), y(t), z(t))=(2,-1,9)+t \vec{n}(2,-1,9), t \in \mathbb{R}$, or equivalently as $x(t)=2+t$, $y(t)=-1$, $z(t)=9+8 t$, where $t \in \mathbb{R}$.

Q-4) Let

$$
f(x, y)= \begin{cases}\frac{2 x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Calculate and compare $f_{x y}(0,0)$ and $f_{y x}(0,0)$.

Solution:

$$
f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} \frac{0}{x}=0 .
$$

Similarly $f_{y}(0,0)=0$. This gives

$$
f_{x}(x, y)= \begin{cases}\frac{2 y\left(x^{4}-y^{4}+4 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Using this we can calculate $f_{x y}(0,0)$ as follows:

$$
\begin{aligned}
f_{x y}(0,0) & =\lim _{y \rightarrow 0} \frac{f_{x}(0, y)-f_{x}(0,0)}{x} \\
& =\lim _{y \rightarrow 0} \frac{\frac{-2 y^{5}}{y^{4}}-0}{y} \\
& =-2 .
\end{aligned}
$$

Similarly we have

$$
f_{y}(x, y)= \begin{cases}\frac{2 x\left(x^{4}-y^{4}-4 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

and using this as above we find $f_{y x}(0,0)=2$.

Q-5) Find $\frac{\partial^{3}}{\partial t^{2} \partial s} f\left(s^{2}-\cos ^{2} 3 t, e^{s^{2}}+5 t^{2}\right)$ in terms of the partial derivatives of f.
Solution: Note that for any function $g=g\left(s^{2}-\cos ^{2} 3 t, e^{s^{2}}+5 t^{2}\right)$ we have

$$
\frac{\partial}{\partial t} g=\left(g_{x}, g_{y}\right) \cdot(3 \sin 6 t, 10 t)
$$

We first find that

$$
\frac{\partial}{\partial s} f=2 s\left(f_{x}+c f_{y}\right)
$$

where $c=e^{s^{2}}$. Then

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t \partial s} f= & \frac{\partial}{\partial t} \frac{\partial f}{\partial s} \\
= & 2 s\left[\left(f_{x x}, f_{x y}\right) \cdot(3 \sin 6 t, 10 t)+c\left(f_{y x}, f_{y y}\right) \cdot(3 \sin 6 t, 10 t)\right] \\
= & (6 s) \sin 6 t f_{x x}+(20 s) t f_{x y}+(6 s c) \sin 6 t f_{y x}+(20 c s) t f_{y y} \\
\frac{\partial^{3}}{\partial t^{2} \partial s} f= & \left\{(36 s) \cos 6 t f_{x x}+(6 s) \sin 6 t\left(f_{x x x}, f_{x x y}\right) \cdot(3 \sin 6 t, 10 t)\right\} \\
& +\left\{(20 s) f_{x y}+(20 s) t\left(f_{x y x}, f_{x y y}\right) \cdot(3 \sin 6 t, 10 t)\right\} \\
& +\left\{(36 s c) \cos 6 t f_{y x}+(6 s c) \sin 6 t\left(f_{y x x}, f_{y x y}\right) \cdot(3 \sin 6 t, 10 t)\right\} \\
& +\left\{(20 c s) f_{y y}+(20 c s) t\left(f_{y y x}, f_{y y y}\right) \cdot(3 \sin 6 t, 10 t)\right\}
\end{aligned}
$$

