Math 116 Calculus - Homework \# 2 - Solutions

Q-1) Evaluate the double integral of the function $f(x, y)=x y$ over the region bounded by the curves $y=2 x^{2}-2 x-4$ and $y=x+1$.

Solution:

$$
\begin{aligned}
\iint_{D} x y d y d x & =\int_{-1}^{5 / 2} \int_{2 x^{2}-2 x-4}^{x+1} x y d y d x \\
& =\int_{-1}^{5 / 2}\left(-2 x^{5}+4 x^{4}+(13 / 2) x^{3}-7 x^{2}-(15 / 2) x\right) d x \\
& =\frac{2401}{1920}
\end{aligned}
$$

where D is the following region.

Q-2) Let R be the region in the first quadrant of the $x y$-plane bounded by the parabolas $y=x^{2}, y=x^{2}+1, y+x^{2}=4$ and $y+x^{2}=2$. Evaluate the double integral of $f(x, y)=e^{2 y-x^{2}} x$ over R.

Solution: Let T be the transformation from $x y$-plane to $u v$-plane given by $u=y-x^{2}$, $v=y+x^{2}$. Then $J(T)=-4 x, 2 y-x^{2}=(3 / 2) u+(1 / 2) v$, and $T(R)$ is the region in $u v$-plane bounded by the lines $u=1, u=2, v=2$ and $v=4$. Finally we have

$$
\begin{aligned}
\iint_{R} e^{2 y-x^{2}} x & =\iint_{T(R)} e^{(3 / 2) u+(1 / 2) v} x\left|\frac{1}{J(T)}\right| d u d v \\
& =\frac{1}{4}\left(\int_{1}^{2} e^{(3 / 2) u} d u\right)\left(\int_{2}^{4} e^{v / 2} d v\right) \\
& =\frac{1}{3}\left(e^{3}-e^{3 / 2}\right)\left(e^{2}-e\right)
\end{aligned}
$$

Q-3) Evaluate $\int_{0}^{8} \int_{y^{1 / 3}}^{2} \cos \left(x^{2}\right) d x d y$.

Solution:

$$
\begin{aligned}
\int_{0}^{8} \int_{y^{1 / 3}}^{2} \cos \left(x^{2}\right) d x d y= & \int_{0}^{2} \int_{0}^{x^{3}} \cos \left(x^{2}\right) d y d x \\
= & \int_{0}^{2} x^{3} \cos \left(x^{2}\right) d x \\
& \text { use by parts with } u=x^{2}, d v=x \cos x^{2} \text { to get } \\
= & \left(\left.\frac{1}{2} x^{2} \sin x^{2}\right|_{0} ^{2}\right)-\int_{0}^{2} x \sin x^{2} d x \\
= & 2 \sin 4+\left(\left.\frac{1}{2} \cos x^{2}\right|_{0} ^{2}\right) \\
= & 2 \sin 4+\frac{1}{2} \cos 4-\frac{1}{2}
\end{aligned}
$$

Q-4) Find the volume bounded by the plane $8 y+z=12$ and the paraboloid $z=4 x^{2}+4 y^{2}$.
Solution:

$$
\begin{aligned}
\text { Volume } & =\int_{-2}^{2} \int_{-1-\sqrt{4-x^{2}}}^{-1+\sqrt{4-x^{2}}} \int_{4 x^{2}+4 y^{2}}^{12-8 y} d z d y d x \\
& =\frac{16}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x \\
& \text { Here put } x=2 \sin \theta \text { to obtain } \\
& =\frac{256}{3} \int_{-\pi / 2}^{\pi / 2} \cos ^{4} \theta d \theta \\
& =32 \pi
\end{aligned}
$$

Q-5) Find the volume that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane and under the cone $z^{2}=x^{2}+y^{2}$.

Solution:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left(\int_{0}^{2 \pi} d \theta\right)\left(\int_{\pi / 4}^{\pi / 2} \sin \phi d \phi\right)\left(\int_{0}^{2} \rho^{2} d \rho\right) \\
& =\frac{8 \sqrt{2} \pi}{3}
\end{aligned}
$$

